首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.  相似文献   

2.
3.
4.
Y Zou  B Van Houten 《The EMBO journal》1999,18(17):4889-4901
Repair proteins alter the local DNA structure during nucleotide excision repair (NER). However, the precise role of DNA melting remains unknown. A series of DNA substrates containing a unique site-specific BPDE-guanine adduct in a region of non-complementary bases were examined for incision by the Escherichia coli UvrBC endonuclease in the presence or absence of UvrA. UvrBC formed a pre-incision intermediate with a DNA substrate containing a 6-base bubble structure with 2 unpaired bases 5' and 3 unpaired bases 3' to the adduct. Formation of this bubble served as a dynamic recognition step in damage processing. UvrB or UvrBC may form one of three stable repair intermediates with DNA substrates, depending upon the state of the DNA surrounding the modified base. The dual incisions were strongly determined by the distance between the adduct and the double-stranded-single-stranded DNA junction of the bubble, and required homologous double-stranded DNA at both incision sites. Remarkably, in the absence of UvrA, UvrBC nuclease can make both 3' and 5' incisions on substrates with bubbles of 3-6 nucleotides, and an uncoupled 5' incision on bubbles of >/=>/=10 nucleotides. These data support the hypothesis that the E.coli and human NER systems recognize and process DNA damage in a highly conserved manner.  相似文献   

5.
The human XPG endonuclease cuts on the 3' side of a DNA lesion during nucleotide excision repair. Mutations in XPG can lead to the disorders xeroderma pigmentosum (XP) and Cockayne syndrome. XPG shares sequence similarities in two regions with a family of structure-specific nucleases and exonucleases. To begin defining its catalytic mechanism, we changed highly conserved residues and determined the effects on the endonuclease activity of isolated XPG, its function in open complex formation and dual incision reconstituted with purified proteins, and its ability to restore cellular resistance to UV light. The substitution A792V present in two XP complementation group G (XP-G) individuals reduced but did not abolish endonuclease activity, explaining their mild clinical phenotype. Isolated XPG proteins with Asp-77 or Glu-791 substitutions did not cleave DNA. In the reconstituted repair system, alanine substitutions at these positions permitted open complex formation but were inactive for 3' cleavage, whereas D77E and E791D proteins retained considerable activity. The function of each mutant protein in the reconstituted system was mirrored by its ability to restore UV resistance to XP-G cell lines. Hydrodynamic measurements indicated that XPG exists as a monomer in high salt conditions, but immunoprecipitation of intact and truncated XPG proteins showed that XPG polypeptides can interact with each other, suggesting dimerization as an element of XPG function. The mutation results define critical residues in the catalytic center of XPG and strongly suggest that key features of the strand cleavage mechanism and active site structure are shared by members of the nuclease family.  相似文献   

6.
Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions flanking the lesion are catalyzed by different structure-specific endonucleases. The 5' incision is made by a heterodimer of XPF and ERCC1 (Rad1p-Rad10p in Saccharomyces cerevisiae), and the 3' incision is made by XPG (Rad2p in S. cerevisiae). We previously showed that the Drosophila XPF homologue is encoded by the meiotic recombination gene mei-9. We report here the identification of the genes encoding the XPG and ERCC1 homologues (XPG(Dm) and ERCC1(Dm)). XPG(Dm) is encoded by the mus201 gene; we found frameshift mutations predicted to produce truncated XPG(Dm) proteins in each of two mus201 alleles. These mutations cause defects in nucleotide excision repair and hypersensitivity to alkylating agents and ultraviolet light, but do not cause hypersensitivity to ionizing radiation and do not impair viability or fertility. ERCC1(Dm) interacts strongly in a yeast two-hybrid assay with MEI-9, indicative of the presumed requirement for these polypeptides to dimerize to form the functional endonuclease. The Drosophila Ercc1 gene maps to polytene region 51D1-2. The nucleotide excision repair gene mus210 maps nearby (51E-F) but is distinct from Ercc1.  相似文献   

7.
8.
The repair pathways involved in the removal of thymine glycol (TG) from DNA by human cell extracts have been examined. Closed circular DNA constructs containing a single TG at a defined site were used as substrates to determine the patch size generated after in vitro repair by cell extracts. Restriction analysis of the repair incorporation in the vicinity of the lesion indicated that the majority of TG was repaired through the base excision repair (BER) pathways. Repair incorporation 5' to the lesion, characteristic for the nucleotide excision repair pathway, was not found. More than 80% of the TG repair was accomplished by the single-nucleotide repair mechanism, and the remaining TGs were removed by the long patch BER pathway. We also analyzed the role of the xeroderma pigmentosum, complementation group G (XPG) protein in the excision step of BER. Cell extracts deficient in XPG protein had an average 25% reduction in TG incision. These data show that BER is the primary pathway for repair of TG in DNA and that XPG protein may be involved in repair of TG as an accessory factor.  相似文献   

9.
Defects in nucleotide excision repair (NER) as defined by the UV sensitivity of xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD) patients has lead to the identification of most of the genes involved: XPA through XPG, CSA and CSB. Whereas XP patients often show an increased risk for skin cancer after exposure to sunlight, this is not the case for patients with CS and TTD. Several CS patients have been shown to carry a defect in the XPG gene. The XPG, a structure specific endonuclease makes the incision 3' of damage and is also involved in the subsequent 5'incision during the NER process. In addition, XPG plays a role in the removal of oxidative DNA damage. The Drosophila XPG gene was isolated and based on the molecular defect of a spontaneous (insertion) and an EMS induced mutant, it was shown that a mutated XPG is responsible for the Drosophila mutagen-sensitive mutants mus201. One of these mutants, mus201(D1) has been used extensively in studies of the effects and mechanisms of many chemical mutagens as well as X-rays. The results of these studies are discussed in the light of the finding that mus201p is the Drosophila homologue of XPG.  相似文献   

10.
XPG is the human endonuclease that cuts 3' to DNA lesions during nucleotide excision repair. Missense mutations in XPG can lead to xeroderma pigmentosum (XP), whereas truncated or unstable XPG proteins cause Cockayne syndrome (CS), normally yielding life spans of <7 years. One XP-G individual who had advanced XP/CS symptoms at 28 years has been identified. The genetic, biochemical, and cellular defects in this remarkable case provide insight into the onset of XP and CS, and they reveal a previously unrecognized property of XPG. Both of this individual's XPG alleles produce a severely truncated protein, but an infrequent alternative splice generates an XPG protein lacking seven internal amino acids, which can account for his very slight cellular UV resistance. Deletion of XPG amino acids 225 to 231 does not abolish structure-specific endonuclease activity. Instead, this region is essential for interaction with TFIIH and for the stable recruitment of XPG to sites of local UV damage after the prior recruitment of TFIIH. These results define a new functional domain of XPG, and they demonstrate that recruitment of DNA repair proteins to sites of damage does not necessarily lead to productive repair reactions. This observation has potential implications that extend beyond nucleotide excision repair.  相似文献   

11.
The structure-specific endonuclease XPG is an indispensable core protein of the nucleotide excision repair (NER) machinery. XPG cleaves the DNA strand at the 3' side of the DNA damage. XPG binding stabilizes the NER preincision complex and is essential for the 5' incision by the ERCC1/XPF endonuclease. We have studied the dynamic role of XPG in its different cellular functions in living cells. We have created mammalian cell lines that lack functional endogenous XPG and stably express enhanced green fluorescent protein (eGFP)-tagged XPG. Life cell imaging shows that in undamaged cells XPG-eGFP is uniformly distributed throughout the cell nucleus, diffuses freely, and is not stably associated with other nuclear proteins. XPG is recruited to UV-damaged DNA with a half-life of 200 s and is bound for 4 min in NER complexes. Recruitment requires functional TFIIH, although some TFIIH mutants allow slow XPG recruitment. Remarkably, binding of XPG to damaged DNA does not require the DDB2 protein, which is thought to enhance damage recognition by NER factor XPC. Together, our data present a comprehensive view of the in vivo behavior of a protein that is involved in a complex chromatin-associated process.  相似文献   

12.
13.
Nucleotide excision repair (NER) is a DNA repair pathway that is responsible for removing a variety of lesions caused by harmful UV light, chemical carcinogens, and environmental mutagens from DNA. NER involves the concerted action of over 30 proteins that sequentially recognize a lesion, excise it in the form of an oligonucleotide, and fill in the resulting gap by repair synthesis. ERCC1-XPF and XPG are structure-specific endonucleases responsible for carrying out the incisions 5' and 3' to the damage respectively, culminating in the release of the damaged oligonucleotide. This review focuses on the recent work that led to a greater understanding of how the activities of ERCC1-XPF and XPG are regulated in NER to prevent unwanted cuts in DNA or the persistence of gaps after incision that could result in harmful, cytotoxic DNA structures.  相似文献   

14.
Interstrand DNA cross-link damage is a severe challenge to genomic integrity. Nucleotide excision repair plays some role in the repair of DNA cross-links caused by psoralens and other agents. However, in mammalian cells there is evidence that the ERCC1-XPF nuclease has a specialized additional function during interstrand DNA cross-link repair, beyond its role in nucleotide excision repair. We placed a psoralen monoadduct or interstrand cross-link in a duplex, 4-6 bases from a junction with unpaired DNA. ERCC1-XPF endonucleolytically cleaved within the duplex on either side of the adduct, on the strand having an unpaired 3' tail. Cross-links that were cleaved only on the 5' side were purified and reincubated with ERCC1-XPF. A second cleavage was then observed on the 3' side. Relevant partially unwound structures near a cross-link may be expected to arise frequently, for example at stalled DNA replication forks. The results show that the single enzyme ERCC1-XPF can release one arm of a cross-link and suggest a novel mechanism for interstrand cross-link repair.  相似文献   

15.
16.
Because of defective nucleotide excision repair of ultraviolet damaged DNA, xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers. Cell fusion studies have identified seven XP complementation groups, A to G. Previous studies have implicated the products of these seven XP genes in the recognition of ultraviolet-induced DNA damage and in incision of the damage-containing DNA strand. Here, we express the XPG-encoded protein in Sf9 insect cells and purify it to homogeneity. We demonstrate that XPG is a single-strand specific DNA endonuclease, thus identifying the catalytic role of the protein in nucleotide excision repair. We suggest that XPG nuclease acts on the single-stranded region created as a result of the combined action of the XPB helicase and XPD helicase at the DNA damage site.  相似文献   

17.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   

18.
C Rdel  T Jupitz    H Schmidt 《Nucleic acids research》1997,25(14):2823-2827
In human cells DNA damage caused by UV light is mainly repaired by the nucleotide excision repair pathway. This mechanism involves dual incisions on both sides of the damage catalyzed by two nucleases. In mammalian cells XPG cleaves 3' of the DNA lesion while the ERCC1-XPF complex makes the 5' incision. The amino acid sequence of the human excision repair protein ERCC1 is homologous with the fission yeast Swi10 protein. In order to test whether these proteins are functional homologues, we overexpressed the human gene in a Schizosaccharomyces pombe swi10 mutant. A swi10 mutation has a pleiotropic effect: it reduces the frequency of mating type switching (a mitotic transposition event from a silent cassette into the expression site) and causes increased UV sensitivity. We found that the full-length ERCC1 gene only complements the transposition defect of the fission yeast mutant, while a C-terminal truncated ERCC1 protein also restores the DNA repair capacity of the yeast cells. Using the two-hybrid system of Saccharomyces cerevisiae we show that only the truncated human ERCC1 protein is able to interact with the S . pombe Rad16 protein, which is the fission yeast homologue of human XPF. This is the first example yet known that a human gene can correct a yeast mutation in nucleotide excision repair.  相似文献   

19.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

20.
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号