首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Laetoli footprints and early hominin locomotor kinematics   总被引:1,自引:0,他引:1  
A critical question in human evolution is whether the earliest bipeds walked with a bent-hip, bent-knee gait or on more extended hindlimbs. The differences between these gaits are not trivial, because the adoption of either has important implications for the evolution of bipedalism. In this study, we re-examined the Laetoli footprints to determine whether they can provide information on the locomotor posture of early hominins. Previous researchers have suggested that the stride lengths of Laetoli hominins fall within the range of modern human stride lengths and therefore, Laetoli hominins walked with modern-human-like kinematics. Using a dynamic-similarity analysis, we compared Laetoli hominin stride lengths with those of both modern humans and chimpanzees. Our results indicate that Laetoli hominins could have used either a bent-hip, bent-knee gait, similar to a chimpanzee, or an extended-hindlimb gait, similar to a human. In fact, our data suggest that the Laetoli hominins could have walked near their preferred speeds using either limb posture. This result contrasts with most previous studies, which suggest relatively slow walking speeds for these early bipeds. Despite the many attempts to discern limb-joint kinematics from Laetoli stride lengths, our study concludes that stride lengths alone do not resolve the debate over early hominin locomotor postures.  相似文献   

2.
Although the earliest known hominins were apparently upright bipeds, there has been mixed evidence whether particular species of hominins including those in the genus Australopithecus walked with relatively extended hips, knees and ankles like modern humans, or with more flexed lower limb joints like apes when bipedal. Here we demonstrate in chimpanzees and humans a highly predictable and sensitive relationship between the orientation of the ankle joint during loading and the principal orientation of trabecular bone struts in the distal tibia that function to withstand compressive forces within the joint. Analyses of the orientation of these struts using microCT scans in a sample of fossil tibiae from the site of Sterkfontein, of which two are assigned to Australopithecus africanus, indicate that these hominins primarily loaded their ankles in a relatively extended posture like modern humans and unlike chimpanzees. In other respects, however, trabecular properties in Au africanus are distinctive, with values that mostly fall between those of chimpanzees and humans. These results indicate that Au. africanus, like Homo, walked with an efficient, extended lower limb.  相似文献   

3.
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.  相似文献   

4.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

5.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy.  相似文献   

6.
During locomotion, mammalian limb postures are influenced by many factors including the animal's limb length and body mass. Polk (2002) compared the gait of similar-sized cercopithecine monkeys that differed limb proportions and found that longer-limbed monkeys usually adopt more extended joint postures than shorter-limbed monkeys in order to moderate their joint moments. Studies of primates as well as non-primate mammals that vary in body mass have demonstrated that larger animals use more extended limb postures than smaller animals. Such extended postures in larger animals increase the extensor muscle mechanical advantage and allow postures to be maintained with relatively less muscular effort (Polk, 2002; Biewener 1989). The results of these previous studies are used here to address two anthropological questions. The first concerns the postural effects of body mass and limb proportion differences between australopithecines and members of the genus Homo. That is, H. erectus and later hominins all have larger body mass and longer legs than australopithecines, and these anatomical differences suggest that Homo probably used more extended postures and probably required relatively less muscular force to resist gravity than the smaller and shorter-limbed australopithecines. The second question investigates how animals with similar size but different limb proportions differ in locomotor performance. The effects of limb proportions on gait are relevant to inferring postural and locomotor differences between Neanderthals and modern Homo sapiens which differ in their crural indices and relative limb length. This study demonstrates that primates with relatively long limbs achieve higher walking speeds while using lower stride frequencies and lower angular excursions than shorter-limbed monkeys, and these kinematic differences may allow longer-limbed taxa to locomote more efficiently than shorter-limbed species of similar mass. Such differences may also have characterized the gait of Homo sapiens in comparison to Neanderthals, but more experimental data on humans that vary in limb proportions are necessary in order to evaluate this question more thoroughly.  相似文献   

7.
Walking with increased ankle pushoff decreases hip muscle moments   总被引:1,自引:1,他引:0  
In a simple bipedal walking model, an impulsive push along the trailing limb (similar to ankle plantar flexion) or a torque at the hip can power level walking. This suggests a tradeoff between ankle and hip muscle requirements during human gait. People with anterior hip pain may benefit from walking with increased ankle pushoff if it reduces hip muscle forces. The purpose of our study was to determine if simple instructions to alter ankle pushoff can modify gait dynamics and if resulting changes in ankle pushoff have an effect on hip muscle requirements during gait. We hypothesized that changes in ankle kinetics would be inversely related to hip muscle kinetics. Ten healthy subjects walked on a custom split-belt force-measuring treadmill at 1.25m/s. We recorded ground reaction forces and lower extremity kinematic data to calculate joint angles and internal muscle moments, powers and angular impulses. Subjects walked under three conditions: natural pushoff, decreased pushoff and increased pushoff. For the decreased pushoff condition, subjects were instructed to push less with their feet as they walked. Conversely, for the increased pushoff condition, subjects were instructed to push more with their feet. As predicted, walking with increased ankle pushoff resulted in lower peak hip flexion moment, power and angular impulse as well as lower peak hip extension moment and angular impulse (p<0.05). Our results emphasize the interchange between hip and ankle kinetics in human walking and suggest that increased ankle pushoff during gait may help to compensate for hip muscle weakness or injury and reduce hip joint forces.  相似文献   

8.
Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.  相似文献   

9.
Seven species of ground-dwelling birds (body mass range: 0.045-90 kg) were filmed while walking and running on a treadmill. High-speed light films were also taken of humans to compare kinematic patterns of avian with human bipedalism. Consistent patterns of stride frequency, stride length, step length, duty factor and limb excursion were observed in all species, with most of the variation among species being due to differences in body size. In general, smaller bipeds have higher stride frequencies (α M −0.18), shorter stride lengths (α M 0.38) and more limited ranges of speed within each gait than large bipeds. After normalizing for size (based on Froude number, after Alexander, 1977), remaining kinematic variation is largely due to interspecific differences in posture and relative limb segment lengths. For their size, smaller bipeds have greater step lengths, limb excursion angles and duty factors than large bipeds because of their more crouched posture and greater effective limb length. The most notable differences in limb kinematics between birds and humans occur at the walk-run transition and are maintained as running speed increases. Change of gait is smooth and difficult to discern in birds, but distinct in humans, involving abrupt decreases in step length and duty factor (time of contact) and a corresponding increase in limb swing time. These differences appear to reflect a spring-like run that is stiff in humans (favouring elastic energy recovery) but more compliant in birds (increasing time of ground contact). Differences between birds and humans in balance of the body's centre of mass not only affect femoral orientation and motion, but also affect pattern of limb excursion with speed.  相似文献   

10.
Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black‐necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Walking requires coordination of muscles to support the body during single stance. Impaired ability to coordinate muscles following stroke frequently compromises walking performance and results in extremely low walking speeds. Slow gait in post-stroke hemiparesis is further complicated by asymmetries in lower limb muscle excitations. The objectives of the current study were: (1) to compare the muscle coordination patterns of an individual with flexed stance limb posture secondary to post-stroke hemiparesis with that of healthy adults walking very slowly, and (2) to identify how paretic and non-paretic muscles provide support of the body center of mass in this individual. Simulations were generated based on the kinematics and kinetics of a stroke survivor walking at his self-selected speed (0.3 m/s) and of three speed-matched, healthy older individuals. For each simulation, muscle forces were perturbed to determine the muscles contributing most to body weight support (i.e., height of the center of mass during midstance). Differences in muscle excitations and midstance body configuration caused paretic and non-paretic ankle plantarflexors to contribute less to midstance support than in healthy slow gait. Excitation of paretic ankle dorsiflexors and knee flexors during stance opposed support and necessitated compensation by knee and hip extensors. During gait for an individual with post-stroke hemiparesis, adequate body weight support is provided via reorganized muscle coordination patterns of the paretic and non-paretic lower limbs relative to healthy slow gait.  相似文献   

12.
In this study, we examined the kinematics of bipedal walking in macaque monkeys that have been highly trained to stand and walk bipedally, and compared them to the kinematics of bipedal walking in ordinary macaques. The results revealed that the trained macaques walked with longer and less frequent strides than ordinary subjects. In addition, they appear to have used inverted pendulum mechanics during bipedal walking, which resulted in an efficient exchange of potential and kinetic energy. These gait characteristics resulted from the relatively more extended hindlimb joints of the trained macaques. By contrast, the body of the ordinary macaques translated downward during the single-limb stance phase due to more flexed hindlimb joints. This resulted in almost in-phase fluctuations of potential and kinetic energy, which indicated that energy transformation was less efficient in the ordinary macaques. The findings provide two insights into the early stage of the evolution of human bipedalism. First, the finding that training considerably improved bipedal walking a posteriori may explain why the very first bipeds that might not yet have been morphologically adapted to bipedal walking continued to walk bipedally. The evolutionary transition from quadrupedalism to bipedalism might not be as difficult as has been envisioned. In addition, the finding that macaques, which are phylogenetically distant from humans and in which bipedal walking is unlike human walking, could develop humanlike gait characteristics with training, provides strong support for the commonly held but unproven idea that the characteristics of the human gait are advantageous to human bipedalism.  相似文献   

13.
The costs of different modes of bipedalism are a key issue in reconstructing the likely gait of early human ancestors such as Australopithecus afarensis. Some workers, on the basis of morphological differences between the locomotor skeleton of A. afarensis and modern humans, have proposed that this hominid would have walked in a 'bent-hip, bent-knee' (BHBK) posture like that seen in the voluntary bipedalism of untrained chimpanzees. Computer modelling studies using inverse dynamics indicate that on the basis of segment proportions AL-288-1 should have been capable of mechanically effective upright walking, but in contrast predicted that BHBK walking would have been highly ineffective. The measure most pertinent to natural selection, however, is more likely to be the complete, physiological, or metabolic energy cost. We cannot measure this parameter in a fossil. This paper presents the most complete investigation yet of the metabolic and thermoregulatory costs of BHBK walking in humans. Data show that metabolic costs including the basal metabolic rate (BMR) increase by around 50% while the energy costs of locomotion and blood lactate production nearly double, heat load is increased, and core temperature does not return to normal within 20 minutes rest. Net effects imply that a resting period of 150% activity time would be necessary to prevent physiologically intolerable heat load. Preliminary data for children suggest that scaling effects would not significantly reduce relative costs for hominids of AL-288-1's size. Data from recent studies using forwards dynamic modelling confirm that similar total (including BMR) and locomotor metabolic costs would have applied to BHBK walking by AL-288-1. We explore some of the ecological consequences of our findings.  相似文献   

14.
The Dmanisi hominins inhabited a northern temperate habitat in the southern Caucasus, approximately 1.8 million years ago. This is the oldest population of hominins known outside of Africa. Understanding the set of anatomical and behavioral traits that equipped this population to exploit their seasonal habitat successfully may shed light on the selection pressures shaping early members of the genus Homo and the ecological strategies that permitted the expansion of their range outside of the African subtropics. The abundant stone tools at the site, as well as taphonomic evidence for butchery, suggest that the Dmanisi hominins were active hunters or scavengers. In this study, we examine the locomotor mechanics of the Dmanisi hind limb to test the hypothesis that the inclusion of meat in the diet is associated with an increase in walking and running economy and endurance. Using comparative data from modern humans, chimpanzees, and gorillas, as well as other fossil hominins, we show that the Dmanisi hind limb was functionally similar to modern humans, with a longitudinal plantar arch, increased limb length, and human-like ankle morphology. Other aspects of the foot, specifically metatarsal morphology and tibial torsion, are less derived and similar to earlier hominins. These results are consistent with hypotheses linking hunting and scavenging to improved walking and running performance in early Homo. Primitive retentions in the Dmanisi foot suggest that locomotor evolution continued through the early Pleistocene.  相似文献   

15.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   

16.
The Re-Link Trainer (RLT) is a modified walking frame with a linkage system designed to apply a non-individualized kinematic constraint to normalize gait trajectory of the left limb. The premise behind the RLT is that a user’s lower limb is constrained into a physiologically normal gait pattern, ideally generating symmetry across gait cycle parameters and kinematics. This pilot study investigated adaptations in the natural gait pattern of healthy adults when using the RLT compared to normal overground walking. Bilateral lower limb kinematic and electromyography data were collected while participants walked overground at a self-selected speed, followed by walking in the RLT. A series of 2-way analyses of variance examined between-limb and between-condition differences. Peak hip extension and knee flexion were reduced bilaterally when walking in the RLT. Left peak hip extension occurred earlier in the gait cycle when using the RLT, but later for the right limb. Peak hip flexion was significantly increased and occurred earlier for the constrained limb, while peak plantarflexion was significantly reduced. Peak knee flexion and plantarflexion in the right limb occurred later when using the RLT. Significant bilateral reductions in peak electromyography amplitude were evident when walking in the RLT, along with a significant shift in when peak muscle activity was occurring. These findings suggest that the RLT does impose a significant constraint, but generates asymmetries in lower limb kinematics and muscle activity patterns. The large interindividual variation suggests users may utilize differing motor strategies to adapt their gait pattern to the imposed constraint.  相似文献   

17.
Terrestrial mammals are characterized by their digitigrade limb postures, which are proposed to increase effective limb length (ELL) to achieve preferred or higher locomotor speeds more efficiently. Accordingly, digitigrade postures are associated with cursorial locomotion. Unlike most medium‐ to large‐sized terrestrial mammals, terrestrial cercopithecine monkeys lack most cursorial adaptations, but still adopt digitigrade hand postures. This study investigates when and why terrestrial cercopithecine monkeys adopt digitigrade hand postures during quadrupedal locomotion. Three cercopithecine species (Papio anubis, Macaca mulatta, Erythrocebus patas) were videotaped moving unrestrained along a horizontal runway at a range of speeds (0.4–3.4 m/s). Three‐dimensional forelimb kinematic data were recorded during forelimb support. Hand posture was measured as the angle between the metacarpal segments and the ground (MGA). As predicted, a larger MGA was correlated with a longer ELL. At slower speeds, subjects used digitigrade postures (larger MGA), however, contrary to expectations, all subjects used more palmigrade hand postures (smaller MGA) at faster speeds. Digitigrade postures at slower speeds may lower cost of transport by increasing ELL and step lengths. At higher speeds, palmigrade postures may be better suited to spread out high ground reaction forces across a larger portion of the hand thereby potentially decreasing stresses in hand bones. It is concluded that a digitigrade forelimb posture in primates is not an adaptation for high speed locomotion. Accordingly, digitigrady may have evolved for different reasons in primates compared to other mammalian lineages. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

19.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

20.
People come in different shapes and sizes. In particular, calf muscle size in humans varies considerably. One possible cause for the different shapes of calf muscles is the inherent difference in neural signals sent to these muscles during walking. In sedentary adults, the variability in neural control of the calf muscles was examined with muscle size, walking kinematics and limb morphometrics. Half the subjects walked while activating their medial gastrocnemius (MG) muscles more strongly than their lateral gastrocnemius (LG) muscles during most walking speeds ('MG-biased'). The other subjects walked while activating their MG and LG muscles nearly equally ('unbiased'). Those who walked with an MG-biased recruitment pattern also had thicker MG muscles and shorter heel lengths, or MG muscle moment arms, than unbiased walkers, but were similar in height, weight, lower limb length, foot length, and exhibited similar walking kinematics. The relatively less plastic skeletal system may drive calf muscle size and motor recruitment patterns of walking in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号