首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niclosamide, a widely used anthelmintic drug in underdeveloped countries, is known to be mutagenic in the Salmonella typhimurium microsomal test system. The urine obtained from mice treated with niclosamide is mutagenic in the TA98 and TA1538 strains. Its effects on mouse-sperm morphology were evaluated in CD1 and (BALB/cJ x DBA/2J) F1 mice after 5 daily oral niclosamide doses of either 60, 80, 100 or 120 mg/kg. A statistically significant increase in abnormal sperm morphology was detected in both CD1 and (BALB/cJ x DBA/2J) F1 mice. No drug-related effects on testis weight nor on sperm count were observed in either genotype. Urine samples obtained from niclosamide-treated F1 mice were assayed with the Salmonella typhimurium strain TA1538 both in the absence and presence of beta-glucuronidase. In the absence of glucuronidase, urine mutagenicity increased with increasing dose and the highest doses were toxic. In the presence of glucuronidase, urine mutagenicity and toxicity also increased. Only at the highest dose (120 mg/kg), however, was there a positive correlation between the urine mutagenic activity and an increase in the number of abnormal sperm. The results of this study suggest that the increase in abnormal sperm depends on the systemic presence of non-conjugated niclosamide metabolites.  相似文献   

2.
The mutagenicity of 7 positional isomers of aminoquinolines (AQ) and their N-acetyl derivatives (AcAQ) was tested in Salmonella typhimurium TA100 and TA98 in the presence and absence of S9 mix. In a series of aminoquinolines, the order of mutagenic potency in the presence of S9 mix is: 5-AQ greater than 8-AQ greater than 7-AQ greater than 3-AQ greater than 2-AQ much greater than 4-AQ, 6-AQ. The alpha-positional isomers, 5-AQ and 8-AQ, are more mutagenic than the beta-isomer, 2-, 3-, 6-, 7-AQ's. These results are in contrast to the finding that beta-naphthylamine is more mutagenic than alpha-naphthylamine. In a series of N-acetylaminoquinolines, the order of mutagenic potency in the presence of S9 mix is: 7-AcAQ greater than 6-AcAQ greater than 8-AcAQ much greater than all the others. It is suggested that the AQ and AcAQ series might exert their mutagenicity through different molecular mechanisms (i.e., metabolic activation) from each other. The rate of metabolic activation does not seem to be correlated with the mutagenic potency of the compounds. It is noteworthy that 7-AQ and 8-AQ are mutagenic in both the strains tested in the absence of S9 mix.  相似文献   

3.
The mutagenic (TFT resistance) and toxic responses of mouse lymphoma (MOLY) L5178Y cells and human lymphoblast (HULY) TK6 cells were compared for 13 chemicals. The mutagenic activities of 8 of the 13 chemicals (62%) examined in the HULY and MOLY assays are in agreement - the results being judged positive in both assays. However, a dramatic difference is observed when the two conditions of metabolic activation are considered separately; the overall concordance of 8/13 has been achieved by combining a 13/13 (100%) agreement in the absence of S9 with a 1/6 (17%) agreement in the presence of S9. In the absence of S9, the concentration ranges, lowest significant doses, and shapes of the concentration-response curves for both toxicity and mutagenicity were similar in spite of the differences in exposure times (4 h for MOLY, 20 for HULY) and expression times (2 days for MOLY, 3 days for HULY). The general agreement observed in the absence of S9 contrasted with the differences manifested in its presence. 6 compounds which were negative in the absence of S9 were tested in both the MOLY and HULY assays in the presence of S9. Of the 6 chemicals, only 1 was positive in both MOLY and HULY under the latter condition; 4 others were positive in MOLY and negative in HULY whereas 1 was positive in HULY and negative in MOLY.  相似文献   

4.
Cadmium chloride (CdCl2) at concentrations of 0.5 mM was significantly mutagenic in Salmonella typhimurium tester strains and reverted histidine auxotrophy due either to missense (TA1975 and TA1535) or to frameshift (TA1537) mutations. It also induced forward mutations to 8-azaguanine resistance in each strain, but failed to increase mutation frequencies in strain TA100. More importantly, CdCl2 increased the mutagenicity of two common nitrosamines in synergistic fashion, at a level up to 30-fold greater than expected from simple additivity. The mutation frequency induced by N-methyl-N'-nitro-N-nitrosoguanidine was increased about 10-fold in the presence of 0.5 mM CdCl2. This synergism was seen both in the induction of 8-azaguanine resistance and the reversion of histidine auxotrophy and was observed in the repair-proficient strain TA1975 as well as its repair-defective (uvrB-) derived strain TA1535. The synergism was dependent upon Cd concentration and was much reduced at 0.25 mM CdCl2. The strongest synergism was observed in the reversion of histidine auxotrophy in TA1975 by 180 microM methylnitrosourea and 0.5 mM CdCl2. In contrast to mutagenicity, there was no evidence for synergism in the toxicity of CdCl2. These data suggest that cadmium might interfere with the repair of both spontaneous and nitrosamine-induced mutations. They also raise the possibility that cadmium and nitrosamines may have synergistic effects as environmental carcinogens.  相似文献   

5.
Mutagenicity of 4 popular brands of smokeless tobaccos was studied using a S. typhimurium forward mutation assay. Aqueous extracts of 4 brands and dichloromethane and methanol extracts of 1 of the 4 brands of smokeless tobacco's did not induce significant mutagenicity either in the presence or absence of metabolic activation. Aqueous and organic extracts were however mutagenic when treated with physiological levels of sodium nitrite (0.25 mM) at acidic pH and without metabolic activation. The results indicate that smokeless tobacco contain polar and non-polar chemicals which become mutagenic to S. typhimurium under nitrosation conditions.  相似文献   

6.
Exponentially growing TK6 human lymphoblasts were exposed to either 0-50 microM N-hydroxy-2-acetylaminofluorene (N-OH-AAF) or 0-10 microM 7-acetyl-N-hydroxy-2-acetylaminofluorene (7-acetyl-N-OH-AAF) in both the absence and presence of a partially purified preparation of hamster-liver N-arylhydroxamic acid N,O-acyltransferase (AHAT). Neither N-arylhydroxamic acid was toxic to the lymphoblasts, nor mutagenic at the thymidine kinase (tk) locus, in the absence of AHAT over the concentration range examined. In the presence of AHAT, an enzyme that activates N-arylhydroxamic acids to electrophilic N-acetoxyarylamine intermediates, both compounds caused toxicity and mutagenicity in TK6 cells. The 7-acetyl-N-OH-AAF was approximately 10-fold more toxic and mutagenic than the unsubstituted N-OH-AAF. These data demonstrate that metabolism of these N-arylhydroxamic acids, presumably to N-acetoxyarylamine intermediates by AHAT, is a key event in the biological activity of these agents. In addition, the presence of electron-withdrawing 7-acetyl substituent that is thought to stabilize N-acetoxy intermediates, appears to enhance the biological activity of the unsubstituted N-OH-AAF.  相似文献   

7.
The mutagenic activity of Flunitrazepam, the active ingredient of the drug Rohypnol, has been investigated by using the Salmonella/microsome mutagenicity test. A dose-related mutagenic effect was observed on Salmonella typhimurium strain TA 100 either in the absence or in the presence of a rat liver microsomal fraction (S9) as in vitro metabolic activation system. By adopting a modification of the Salmonella test, the mutagenicity of urines from rats or patients treated with the drug was evaluated. In these cases mutagenic activity was detected toward the Salmonella strains TA 98 and TA 100 both in presence and in absence of the metabolic activation system. The data indicate that Flunitrazepam and/or its urinary metabolites can induce both base-pair substitutions or frame-shift point mutations.  相似文献   

8.
The mutagenic activities of 2,6-dinitrotoluene (2,6-DNT) and its 6 metabolites, and their 8 related compounds were examined using Salmonella typhimurium strains TA98 and TA100 in the absence or presence of S9 mix. 2,6-DNT itself showed no mutagenicity toward either strain, but 2,6-dinitrobenzaldehyde (2,6-DNBAl), one of the metabolites of 2,6-DNT, showed the highest mutagenic activity in strain TA100. 2,6-DNBAl was a direct-acting mutagen, not requiring metabolic activation. The other compounds containing nitro groups showed weak or no mutagenic activity. This result suggests that the direct-acting mutagenicity of 2,6-DNBAl is mainly due to the aldehyde group of the 2,6-DNBAl molecule.  相似文献   

9.
The mutagenicity of nifurtimox (nfx) and 8 nfx analogues has been investigated with the L-arabinose forward-mutation assay of Salmonella typhimurium. The nfx analogues tested were obtained by replacing the 3-methyl-4-yl-tetrahydro-1,4-thiazine-1,1-dioxide group of the parent compound with the following other groups: indazol-1-yl (1); pyrazol-1-yl (2); benzimidazol-1-yl (3); 1,2,4-triazol-4-yl (4); 1-methyl-3-methylthio-1,2,4-triazol-4-yl-5-thione (5); 3,5-bis(methylthio)-1,2,4-triazol-4-yl (6); 1-adamantyl (7); 4,6-diphenylpyridin-1-yl-2-one (8). The mutagenic activity of each chemical was determined by the standard plate-incorporation test, in the presence or absence of the S9 activation mixture. The 9 compounds were mutagenic and exhibited linear dose-mutagenic response relationships. They were direct-acting mutagens and showed a nearly 1000-fold range in mutagenic potency from chemical 1 to nfx. In most cases, the addition of S9 mixture to the test plates decreased the mutagenicity of compounds. This effect was particularly noticeable in the case of chemicals 1-3, 5 and 7 where a more than 70% decrease in mutagenic activity was observed in the presence of the S9 mixture. The mutagenic potency of compounds in the Ara test showed a negative linear correlation with previously reported antitrypanosomal activity. Thus, chemicals 6 and 8 with in vitro activities against Trypanosoma cruzi clearly superior to that of nfx showed 2 of the lowest mutagenic potencies in the Ara test and these were only somewhat higher than the mutagenicity of the reference drug.  相似文献   

10.
Mutagenicity of methyl nitrite in Salmonella typhimurium   总被引:1,自引:0,他引:1  
Methyl nitrite was tested for mutagenicity in Salmonella typhimurium TA1535. In the first set of experiments, plated bacteria were exposed to methyl nitrite in desiccators both in the absence and presence of a metabolizing system (S9 from Aroclor-pretreated Sprague-Dawley rats). Initial concentrations from 125 to 500 ppm were tested. In all experiments an increased initial concentration gave an increased mutagenic response. The mutagenic effect in the presence of S9 was similar to that in the absence of S9. Owing to difficulties in dose determinations in this type of experiment it could not be decided, unequivocally, whether the mutagenic effect was caused by methyl nitrite or its hydrolysis products. Experiments were therefore carried out in suspension, and the concentrations of methyl nitrite and inorganic nitrite were determined. Treatments with inorganic nitrite were also carried out under similar conditions. From the results of these experiments we concluded that methyl nitrite is mutagenic. Possible mechanisms of action of methyl nitrite are discussed, and it is suggested that mutagenicity may be a general property of alkyl nitrites.  相似文献   

11.
The mutagenic activities associated with inhalable airborne particulate matter (PM10) collected over a year in four towns (Czech Republic) have been determined. The dichloromethane extracts were tested for mutagenicity using the Ames plate incorporation test and the Kado microsuspension test both with Salmonella typhimurium TA98 and its derivative YG1041 tester strains in the presence and absence of S9 mixture. The aim of this study was to assess the suitability of both bacterial mutagenicity tests and to choose the appropriate indicator strain for monitoring purposes. To elucidate the correlation between mutagenicity and polycyclic aromatic hydrocarbons (PAHs), the concentration of PAHs in the air samples were determined by GC/MS. In general, the significant mutagenicity was obtained in organic extracts of all samples, but differences according to the method and tester strain used were observed. In both mutagenicity tests, the extractable organic mass (EOM) exhibited higher mutagenicity in the YG1041 strain (up to 97 rev/microg in the plate incorporation and 568 rev/microg in the microsuspension tests) than those in TA98 (up to 2.2 rev/microg in the plate incorporation and 14.5 rev/microg in the microsuspension tests). In the plate incorporation test, the direct mutagenic activity in YG1041 was on average 60-fold higher and in microsuspension assay 45-fold higher with respect to strain TA98. In the presence of S9 mix, the mutagenic potency in YG1041 declined (P<0.001) in summer, but increased in TA98 (P<0.05) in samples collected during the winter season. The microsuspension assay provided higher mutagenic responses in both tester strains, but in both strains a significant decrease of mutagenic potency was observed in the presence of S9 mix (P<0.001 for YG1041, P<0.05 for TA98 in winter). The mutagenic potencies detected with both indicator strains correlated well (r=0.54 to 0.87) within each mutagenicity test used but not (for TA98) or moderately (r=0.44 to 0. 66 for YG1041) between both of the tests. The mutagenic activity (in rev/m(3)) likewise the concentration of benzo[a]pyrene and sum of carcinogenic PAHs showed seasonal variation with distinctly higher values during winter season. A correlation between the PAH concentrations and the mutagenicity results for the plate incorporation, but not for the microsuspension tests was found. In samples from higher industrial areas, the higher mutagenicity values were obtained in plate incorporation test with TA98 and in both tests with YG1041 in summer season (P<0.05). According to our results, plate incorporation test seems to be more informative than microsuspension assay. For routine ambient air mutagenicity monitoring, the use of YG1041 tester strain without metabolic activation and the plate incorporation test are to be recommended.  相似文献   

12.
The mutagenicity of products formed by chlorination after ozonation of naphthoresorcinol in aqueous solution was assayed with Salmonella typhimurium strains TA98 and TA100 in the presence and absence of S9 mix from phenobarbital- and 5,6-benzoflavone-induced rat liver. Ozonated and subsequently chlorinated naphthoresorcinol was directly mutagenic, as was ozonated naphthoresorcinol, in both strains tested. The mutagenic activity at chlorination with 8 equivalents of chlorine per mole of naphthoresorcinol after ozonation was markedly higher than that at only ozonation. Of the identified ozonation products of naphthoresorcinol, muconic acid, after chlorination with 2 or 4 equivalents of chlorine per mole of the compound, induced direct mutagenicity against TA98 and TA100. The chlorination of glyoxal with 0.5 and 1 chlorine equivalents per mole of the compound was shown to produce direct mutagenicity toward TA98. The identification of the chlorination products of these compounds is also discussed.  相似文献   

13.
Fourteen new quinoline derivatives were synthesised and their mutagenicity compared in the Ames test using Salmonella typhimurium TA100 as indicator strain with and without (Aroclor-induced) S9 mix. None of the synthesised quinoline derivatives had to our knowledge been examined before in the Ames test. Quinoline and the monohydroxyquinolines were included as reference compounds. Three of the new derivatives, i.e., quinoline 7,8-oxide, N-methyl-quinoline 5,6-oxide and trans-quinoline-5,6,7,8-dioxide appeared to be mutagenic. Quinoline 7,8-oxide was positive only in the presence of S9 mix, the specific mutagenicity amounting to 2498 +/- 96 and 1289 +/- 120 revertants per mumole with 20 and 10% S9 in the mix, respectively. Both N-methyl-quinoline 5,6-oxide and trans-quinoline-5,6,7,8-dioxide were weakly positive, the former only in the presence of the S9 mix, and the latter irrespective of the presence of S9 mix, the specific mutagenicity amounting to 134 +/- 6 and 123 +/- 10 revertants per mumole, respectively. The mutagenic potency of quinoline 7,8-oxide was of the same order as that of quinoline itself and was distinctly lower than that of 8-hydroxyquinoline. Inconclusive results were obtained with trans-7,8-dihydroxy-7,8-dihydroquinoline, 5,6-dihydroxy-7,8-epoxy-5,6,7,8-tetrahydroquinoline and 8-hydroxyquinoline-N-oxide; if these compounds are mutagenic their mutagenic potency would be at least 20-30 times lower than that of the parent compounds. None of the other chemically synthesised quinoline derivatives showed mutagenic activity with TA100 either in the presence or in the absence of S9 mix. The results obtained with the reference compounds were in accordance with literature data.  相似文献   

14.
The genotoxic potential of bidi tobacco was evaluated by mutagenicity testing of aqueous, aqueous: ethanolic, ethanolic and chloroform extracts of processed tobacco used in the manufacture of 'bidis', indigenous forms of cigarettes smoked in India. The Salmonella/mammalian microsome test (Ames assay) was used to detect mutagenicity in tester strains TA98, TA100 and TA102. The extracts were tested in the absence and presence of metabolic activation using liver S9 from rat and hamster, and following in vitro nitrosation with sodium nitrite at acidic pH. All the extracts were non-mutagenic in the absence of nitrosation. The nitrosated aqueous extract was mutagenic in strains TA98 and TA100. While weak mutagenicity was elicited by the nitrosated aqueous: ethanolic extract in TA100, the nitrosated ethanolic extract induced a 3-fold increase in the number of revertants in the same strain. Moreover both these extracts elicited a strong mutagenic response in TA102, while the chloroform extract was non-mutagenic even after nitrite treatment. The present study indicates that workers employed in the bidi industry are exposed to potentially mutagenic and genotoxic chemicals in the course of their occupation.  相似文献   

15.
The mutagenicity of fenitrothion was determined in strains of Salmonella typhimurium and Escherichia coli. Fenitrothion was found to be non-mutagenic in Salmonella typhimurium strains of TA98, TA1535 and TA1537 and in Escherichia coli WP2uvrA both with and without S9 mix, while weak mutagenicity was observed only in Salmonella typhimurium TA100 and enhanced by the addition of S9 mix. The mutagenicity observed in the TA100 strain was not expressed in a nitroreductase-deficient strain, TA100 NR, and decreased in a transacetylase-deficient strain, TA100 1,8-DNP6. The mutagenicity of fenitrothion was also examined by a gene mutation assay using the gene for hypoxanthine-guanine phosphoribosyltransferase (hgprt) in V79 Chinese hamster lung cells. Fenitrothion did not induce any increment of 6-thioguanine-resistant mutant cells at doses ranging from 0.01 to 0.3 mM regardless of the presence or absence of S9 mix. These results suggest that reduction of fenitrothion by a bacterial nitroreductase of TA100 to an active form is essential for the expression of the mutagenicity of fenitrothion in TA100 and that a bacterial transacetylase of TA100 also has an important role in the process of mutagenic activation.  相似文献   

16.
Ten imidazole derivatives were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 both in the absence and presence of metabolic activation by the microsomal fraction S9 mix. In a general manner, derivatives tested exhibited a greater mutagenic activity in the TA100 strain comparing to the responses in TA 98. In the standard plate incorporation assay, 8 of these substances (80%) were found to be mutagenic for at least one of the two strains in the presence or absence of metabolic activation. Two compounds showed positive results in TA98 and 6 compounds were also mutagenic in TA100 without S9. In the presence of S9 mix, all of the 10 substances were non-mutagenic in TA98, whereas 4 compounds were positive in TA100. The results suggested the mutagenic potentials of the imidazole derivatives particularly inducing the reversion of base-pair substitutions. According to the structure-activity relationships phenyl groups in position 2 with different substituents can confer the mutagenic activity of the tested compounds. Methyl groups in different positions of these phenyl substituents can cause different types of mutations. This mutagenic effect is observed more clearly when the phenyl group is inhibited with a nitro group.  相似文献   

17.
A series of 8 monochloroarenes have been tested for mutagenicity in the Salmonella/microsome assay. None of the compounds was detectably active in the absence of mammalian activation whereas, depending on structure, some of the compounds were mutagenic in its presence having responses higher than those reported for the parent compounds.  相似文献   

18.
To identify the major mutagen in pyroligneous acid (PA), 10 wood and 10 bamboo pyroligneous acids were examined using the Ames test in Salmonella typhimurium strains TA100 and TA98. Subsequently, the mutagenic dicarbonyl compounds (DCs), glyoxal, methylglyoxal (MG), and diacetyl in PA were quantified using high-performance liquid chromatography, and the mutagenic contribution ratios for each DC were calculated relative to the mutagenicity of PA. Eighteen samples were positive for mutagens and showed the strongest mutagenicity in TA100 in the absence of S9 mix. MG had the highest mutagenic contribution ratio, and its presence was strongly correlated with the specific mutagenicity of PA. These data indicate that MG is the major mutagen in PA.  相似文献   

19.
Three naturally occurring indoles were evaluated for potential nitrosatability using the Nitrosation Assay Procedure (NAP test) as recommended by the World Health Organisation. All three indoles i.e. tryptophan, tryptamine and 5-hydroxy-tryptamine were nitrosated to products which were directly mutagenic for S. typhimurium TA1537. In addition, the products of nitrosation of tryptamine and 5-hydroxytryptamine were also mutagenic for strains TA1538, TA98 and TA1535 without the need for metabolic activation. The sensitivities of the frameshift-detecting strains TA1537, TA1538 and TA98 were of particular interest, since nitroso compounds are characteristically base-substitution mutagens. The mutagenic effects of the products formed after nitrosation of each indole at pH 3.6, were eliminated in the presence of S9 mix. This was not the case when the nitrosation assay was carried out at pH 2.6. At this pH the mutagenicity of the nitrosated products varied in the presence of S9 mix and depended upon the nature of the indole undergoing nitrosation, and the bacterial test strain utilised for the mutagenicity assay. This indicated that more than one mutagenic product was responsible for the observed effects. As well as pH, a number of other factors influenced the formation of mutagenic nitroso products. Most notably, the concentrations of precursor compounds (sodium nitrite, and indole) present in the NAP test were of critical importance. As the sodium nitrite concentration was reduced from that recommended by the W.H.O. (40 mM), so the mutagenicity decreased. For all three compounds significant mutagenic effects were lost at sodium nitrite concentrations below 15 mM. In conclusion the data presented in this paper clearly demonstrates that individuals are chronically exposed to naturally occurring substances which readily nitrosate in excess nitrous acid and yield bacterial mutagens.  相似文献   

20.
The mutagenicity of 21 chloro- or fluoronitrobenzene compounds and 9 chloro- or fluorobenzene compounds in Salmonella typhimurium (strains TA98, TA1538, TA1537, TA100 and TA1535) was examined. The tests were carried out under the conditions of absence and presence of liver microsomal activation. 15 nitro-group compounds had mutagenic activity; above all, compounds of fluoronitrobenzene were mutagenic for both types of strain. On the other hand, chloronitrobenzene compounds were mutagenic for base-pair substitution strains only. Mutagenic activity was exhibited by all compounds having a chloro or fluoro substituent at the para and ortho position in the nitrobenzene nucleus. All compounds without a nitro substituent showed no mutagenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号