首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were performed to determine whether the cyclic hexapeptide analog of somatostatin, cyclo(N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe) II, could alter circulating levels of neurotensin (NT) and inhibit the release of NT from small intestine following the intraluminal perfusion of lipid and ETOH. The small intestine of anesthetized rats was perfused with 0.9% NaCl, 1mM ETOH, 100 mM ETOH or 1 mM oleic acid with and without the intravenous infusion of the somatostatin analog. Plasma samples collected from the superior mesenteric vein were extracted, chromatographed on HPLC and assayed with both C-terminal and N-terminal antisera to NT. The basal circulating levels of chromatographically and immunochemically identified NT observed during the perfusion of the small intestine with 0.9% NaCl were significantly lower (p less than 0.01) during the IV infusion of the somatostatin analog as compared to animals infused IV with saline. The 2-3 fold increase in plasma levels of NT observed with the intestinal perfusion of oleic acid and ETOH did not occur in animals simultaneously infused IV with the somatostatin analog. The somatostatin analog was also effective in decreasing the basal levels of NT metabolite NT(1-8) as well as inhibiting the increase in this metabolite that accompanies the stimulated release of NT.  相似文献   

2.
One-week-old-germ-free pigs were inoculated with 10(8) CFU of E.coli bacteria-either commensal 086 strain or virulent 055 strain for 1 d. Bacteria were counted in the small intestine, mesenteric lymph nodes, blood and lungs. The O55 strain reached higher levels in circulation and lungs. IL-8, IL-10 and TNF-alpha concentrations were determined by ELISA in plasma and intestinal washes . No difference in cytokine levels was found between control germ-free pigs and their counterparts associated with commensal O86 strain in spite of its high concentration in the gut and circulation.  相似文献   

3.
Abstract

Dietary oxysterols can reach the circulation and this may contribute to atherosclerosis, where lipid oxidation is thought to be important. There is also evidence that, in rats,peroxidized lipids are absorbed and transported into lymph [Aw TY, Williams MW, Gray L. Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am J Physiol 1992; 262: G99–G106], although the method used to detect lipid peroxides lacked specificity. We tested whether intragastric administration of vegetable oils containing triglyceride hydroperoxides (TG-OOH) to rats resulted in detectable lipid hydroperoxides in mesenteric lymph. Using sensitive HPLC with postcolumn chemiluminescence detection, we were unable to detect hydroperoxides of triglycerides, cholesterylesters or phospholipids during the course of lipid absorption, and lymph levels of ascorbate, urate, α-tocopherol and ubiquinol-9 did not change significantly. By contrast, we observed a striking reducing activity judged by the efficient reduction of administered ubiquinones-9 and -10 to the corresponding ubiquinols. Exposure of rat lymph and isolated chylomicrons to aqueous peroxyl radicals revealed patterns of antioxidant consumption and lipid hydroperoxide formation similar to those described previously for human extravascular fluids and isolated lipoproteins, respectively. In particular, rates of TG-OOH formation in lymph and chylomicrons were very low to undetectable as long as ascorbate and/or ubiquinols were present, but subsequently proceeded in a chain reaction despite the presence of α-tocopherol. These studies demonstrate that rat intestine and mesenteric lymph possess efficient antioxidant defenses against preformed lipid hydroperoxides and (peroxyl) radical mediated lipid oxidation. We conclude that dietary lipid hydroperoxides or postprandial oxidation of lipids are not likely to contribute to these particular forms of oxidized lipids in circulation and aortic tissue.  相似文献   

4.
The effects of 6-keto-PGE1 on vascular resistance and vascular responses to sympathetic nerve stimulation and vasoconstrictor hormones were investigated in the feline mesenteric vascular bed. Infusions of 6-keto-PGE1 into the superior mesenteric artery dilated the mesenteric vascular bed and markedly inhibited vasoconstrictor responses to sympathetic nerve stimulation, norepinephrine and angiotensin II. The effects of 6-keto-PGE1 and PGE1 on vascular resistance and vasoconstrictor responses were quite similar and both substances inhibited responses to nerve stimulation and pressor hormones in a reversible manner. Responses to nerve stimulation, norepinephrine and angiotensin II were inhibited to a similar extent during infusion of 6-keto-PGE1 and PGE1. Results of these studies suggest that 6-keto-PGE1, a newly identified prostaglandin metabolite, and PGE1 possess the ability to inhibit the vasconstrictor effects of sympathetic nerve stimulation and pressor hormones by a nonspecific action on vascular smooth muscle in the feline small intestine.  相似文献   

5.
Neurotensin (NT), given intravenously at 10-50 pmol/kg per min to anesthetized female chickens equipped with a bile duct fistula, dose-dependently elevated hepatic bile flow and bile acid output but only when the enterohepatic circulation was maintained by returning the bile to the intestinal lumen. Infusion of NT at 10 and 50 pmol/kg per min increased the average hepatic bile acid output over a 30-min period to 138 +/- 11 and 188 +/- 13% of control, respectively. During infusion of NT, plasma levels of immunoreactive NT (iNT) increased in time from the basal level (14 +/- 1.3 pM) to reach steady state at 30 min. There was a near linear relationship between the dose of NT infused and the increment in plasma iNT. In addition, infusion of NT at 40 pmol/kg min gave a plasma level of iNT (approximately/= 88 pM) which was within the range of those observed during duodenal perfusion with lipid (54-300 pM) and near to that measured in hepatic portal blood from fed animals (52 +/- 5 pM). Perfusion of duodenum with lipid released endogenous NT and increased the rate of hepatic bile flow. When NT antagonist SR48692 was given, bile flow rate decreased to the basal level. These results suggest that intestinal NT, released by lipid, may participate in the regulation of hepatic bile acid output by a mechanism requiring an intact enterohepatic circulation.  相似文献   

6.
To clarify the metabolism of PGE2, prostacyclin (PGI2) and thromboxane A2 (TxA2) in small vessels in spontaneously hypertensive rats (SHR), we removed superior mesenteric vascular beds from 10 week old SHR and age matched normotensive controls (WKY). The mesenteric artery was perfused with Krebs-Henseleit buffer and samples of effluent collected every 15 minutes during 3 hours perfusion for analysis of PGE2, 6-keto-PGF1 alpha (a stable metabolite of PGI2) and TxB2 (a stable metabolite of TxA2) by specific radioimmunoassays. Levels of all three arachidonic acid (AA) metabolites, PGE2, 6-keto-PGF1 alpha and TxB2, in the mesenteric effluent were significantly reduced in SHR as compared to WKY. TxB2 was detected in all samples throughout the perfusion. 6-keto-PGF1 alpha/PGE2 ratios and TxB2/PGE2 ratios were significantly increased in SHR. 6-keto-PGF1 alpha/TxB2 ratios in the first four samples were significantly decreased in SHR as compared to WKY. These data suggest that there may be reduced availability of PG precusor AA and unbalanced synthesis of PGs in small vessels in SHR. Both may have relevance to the development of hypertension in the animals.  相似文献   

7.
Xenin (1-25) has been detected in various locations in mammalians. It has structural similarities with neurotensin and its intestinal effects are claimed to be mediated by neurotensin receptors. It has been shown to influence gastrointestinal motility. The effects of xenin (1-25) on intestinal microvascular perfusion after ischemia/reperfusion have not been investigated yet. Therefore, the superior mesenteric artery was clamped for 40 min in Wistar rats (n=8). Ten minutes prior to reperfusion, intravenous infusion of xenin (1-25) (5 nmol/kg/h) was started. By means of intravital microscopy, microvascular perfusion in the mucosal layer was assessed. Animals (n=8) with and without clamping of the superior mesenteric artery and infusion of the carrier solution served as controls.After ischemia/reperfusion, xenin (1-25) increased the density of perfused microvessels and the capillary red blood cell velocity compared to ischemic controls. Capillary red blood cell velocity was elevated (p<0.05). Xenin (1-25) improved the heterogeneous distribution of mucosal blood flow during reperfusion demonstrated by an increase of both the perfusion index and the percentage of perfused microvessels.We conclude that the effects of xenin (1-25) on intestinal microcirculation are significantly different from those previously described for neurotensin. A more complex effector mechanism must be postulated that may involve other regulatory peptides and receptors.  相似文献   

8.
The mammalian small intestine is both a source and a site of degradation of neurotensin. Metabolites produced by incubation of the peptide with dispersed enterocytes from porcine small intestine were isolated by high-performance liquid chromatography and identified by amino-acid analysis. The principal sites of cleavage were at the Tyr-11-Ile-12 bond, generating neurotensin-(1-11), and at the Pro-10-Tyr-11 bond, generating neurotensin-(1-10). The corresponding COOH-terminal fragments, neurotensin-(11-13) and -(12-13) were metabolized further. Formation of neurotensin-(1-11) and -(1-10) was completely inhibited by phosphoramidon (Ki = 6 nM), an inhibitor of endopeptidase 24.11, but not by captopril, an inhibitor of peptidyl dipeptidase A. Incubation of neurotensin with purified endopeptidase 24.11 from pig stomach also resulted in cleavage of the Tyr-11-Ile-12 and Pro-10-Tyr-11 bonds. A minor pathway of cell-surface-mediated degradation was the phosphoramidon-insensitive cleavage of the Tyr-3-Glu-4 bond, generating neurotensin-(1-3) and neurotensin-(4-13). No evidence for specific binding sites (putative receptors) for neurotensin was found either on the intact enterocyte or on vesicles prepared from the basolateral membranes of the cells. Neurotensin-(1-8), the major circulating metabolite, was not formed when neurotensin(1-13) was incubated with cells, but represented a major metabolite (together with neurotensin-(1-10] when neurotensin-(1-11) was used as substrate. The study has shown that degradation of neurotensin in the epithelial layer of the small intestine is mediated principally through the action of endopeptidase 24.11, but this enzyme is probably not responsible for the production of the neurotensin fragments detected in the circulation.  相似文献   

9.
An in vivo perfusion technique, using 3 intestinal loops representing the anterior, mid and posterior regions of the rat small intestine, was used to determine intestinal glucose uptake 5 days after infection with Trichinella spiralis. At high levels of infection (3,000 and 6,000 larvae/rat) net glucose absorption by the intestinal mucosa was significantly impaired in all regions of the small intestine when compared to uninfected controls. At low levels of infection (50 larvae/rat) glucose uptake by the mucosa was significantly enhanced in all 3 regions of the small intestine. Intermediate levels of infections (200-1,000 larvae/rat) also enhanced glucose uptake, but only in the anterior regions of the small intestine. When washings from the small intestine of rats infected with 50 larvae/rat were added to the perfusion fluid used on uninfected rats, glucose uptake was also significantly enhanced. These results suggest that at low levels of infection the intestinal lumen contains a metabolite which may affect the mucosal transport of glucose and the related fluxes of H2O, Na+, Cl-, and K+, in the rat intestine. Luminal [H+] and pCO2 decreased from the proximal to distal regions of the small intestine following perfusion; pO2 was significantly decreased in the proximal and distal regions.  相似文献   

10.
Neurotensin (NT), a hormone released from intestine by ingested fat, facilitates lipid digestion by stimulating pancreatic secretion and slowing the movement of chyme. In addition, NT can contract the gall bladder and enhance the enterohepatic circulation (EHC) of bile acids to promote micelle formation. Our recent finding that NT enhanced and an NT antagonist inhibited [(3)H]taurocholate ([(3)H]TC) absorption from proximal rat small intestine indicated a role for endogenous NT in the regulation of EHC. Here, we postulate the involvement of intestinal mast cells in the TC uptake process and in the stimulatory effect of NT. In anesthetized rats with the bile duct cannulated for bile collection, infusion of NT (10 pmol.kg(-1).min(-1)) enhanced the [(3)H]TC recovery rate from duodenojejunum by 2.2-fold. This response was abolished by pretreatment with mast cell stabilizers (cromoglycate, doxantrazole) and inhibitors of mast cell mediators (diphenhydramine, metergoline, zileuton). In contrast, mast cell degranulators (compound 48/80, substance P) and mast cell mediators (histamine, leukotriene C(4)) reproduced the effect of NT. N(G)-nitro-l-arginine methyl ester enhanced and l-arginine inhibited basal and NT-induced TC uptake, consistent with the known inhibitory effect of nitric oxide (NO) on mast cell reactivity. These results argue that basal and NT-stimulated TC uptake in rat jejunum are similarly dependent on mast cells, are largely mediated by release of mast cell mediators, and are subject to regulation by NO.  相似文献   

11.
Ischemic preconditioning provides a way of protecting organs from damage inflicted with prolonged ischemia-reperfusion. In this study, we investigated the mechanism of ischemic preconditioning involved in inhibition of prolonged ischemia-reperfusion-induced mucosal apoptosis in rat small intestine. Ischemic preconditioning was triggered by a transient occlusion of the superior mesenteric artery followed by reperfusion. Ischemia-reperfusion was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion in the small intestine. Ischemia-reperfusion alone induced mucosal apoptosis and mitochondrial respiratory dysfunction via promoted reactive oxygen species generation, reduced mitochondrial glutathione oxidation, increased mitochondrial lipid peroxidation, reduced mitochondrial membrane potential, and enhanced release of cytochrome c from mitochondria to activate caspase-9 and caspase-6 in the small intestine. Pretreatment with 20-min ischemia followed by 5-min reperfusion significantly inhibited the prolonged ischemia-reperfusion-induced mucosal apoptosis by 30%. Ischemic preconditioning ameliorated mitochondrial respiratory dysfunction by 50%, reduced reactive oxygen species generation by 38%, and suppressed mitochondrial lipid peroxidation by 36%, resulting in improvement of the mitochondrial membrane potential and prevention of cytochrome c release as well as caspase-6 activation. Results suggest that ischemic preconditioning attenuated ischemia-reperfusion-induced mucosal apoptosis partly by inhibiting the reactive oxygen species-mediated mitochondria-dependent pathway in the rat small intestine.  相似文献   

12.
Ernst A  Hellmich S  Bergmann A 《Peptides》2006,27(7):1787-1793
Proneurotensin/neuromedin N (pro NT/NMN) is the common precursor of two biologically active peptides, neurotensin (NT) and neuromedin N (NMN). We have established antibodies against peptide sequences of the NT/NMN precursor and developed a sandwich immunoassay for the detection of pro NT/NMN immunoreactivity in human circulation. Endogenous pro NT/NMN immunoreactivity was enriched by affinity chromatography using antibodies against two different pro NT/NMN epitopes, and further purified by reversed phase HPLC. Mass spectrometry analysis revealed pro NT/NMN 1-117 as major pro NT/NMN immunoreactivity in human circulation. Pro NT/NMN 1-117 is detectable in serum from healthy individuals (n = 124; median 338.9 pmol/L). As known for NT, the release of pro NT/NMN 1-117 from the intestine into the circulation is stimulated by ingestion of an ordinary meal. Investigation of the pro NT/NMN 1-117 in vitro stability in human serum and plasma revealed that this molecule is stable for at least 48 h at room temperature. Since pro NT/NMN 1-117 is theoretically produced during precursor processing in stoichiometric amounts relative to NT and NMN, it could be a surrogate marker for the release of these bioactive peptides.  相似文献   

13.
A loading dose of 3H-estriol was given to male dogs followed by a constant infusion. The concentrations of total radioactivity, conjugated estriol metabolites, estriol, estriol-o-glucosiduronate, estriol-16alpha-glucosiduronate, estriol-3-sulfate and estriol-3-sulfate, 16alpha-glucosiduronate were determined in plasma from the femoral artery(A), hepatic vein(HV) and superior mesenteric vein (SMV). From these values the splanchnic (100[1-HV/A]) and intestinal (100[1-SMV/A]) extractions were calculated. The mean splanchnic extraction of total radioactivity was positive (23, SE 3, P less than .01), indicating net uptake by the splanchnic area, possibly due to biliary excretion. The mean splanchnic extraction of estriol was 77, SE 1, P less than .01, also indicating net uptake. The splachnic extractions of estriol-3-glucosiduronate, estriol-16alpha-glucosiduronate and estriol-3-sulfate were negative (-15, SE 3, P less than .01; -23, SE 6, P less than .01; -31, SE 8, P less than .01 respectively) indicating net formation of these conjugates for release into the systemic circulation. The mean intestinal extraction of estriol was 12, SE 4, P less than .01, indicating net uptake by the intestine. This net uptake was associated with mean negative intestinal extractions of estriol-3-glucosiduronate (-15, SE 7, P approximately .05), estriol-3-sulfate (-33, SE 10, P less than .01) and estriol-3-sulfate, 16alpha-glucosiduronate (-53, SE 13, P less than .01), indicating net formation of these conjugates by the intestine.  相似文献   

14.
H Kindahl 《Prostaglandins》1977,13(4):619-629
[5,6,8,9,11,12,14,15-3H8]-Thromboxane B2 was injected into the saphenous vein of female cynomolgus monkeys, and blood samples were withdrawn from the contralateral saphenous vein. The compound was eliminated from the circulation with a half-life of about 10 min after an initial rapid disappearance. Some more polar products appeared with time, and also small amounts of material less polar than thromboxane B2; however, the dominating compound in all blood samples was unconverted thromboxane B2. About 45% of the given dose of tritium was excreted into urine in 48 hrs. Several metabolites of thromboxane B2 were found. The major urinary metabolite was identified as dinorthromboxane B2 (about 32% of urinary radioactivity). Unconverted thromboxane B2 was also found in considerable amounts (13% of urinary radioactivity). It is concluded that 1) dehydrogenation at C-12 is not a major pathway in the degradation of this compound, in contrast to metabolism at the corresponding C-15 alcohol group of prostaglandins; 2) after having gained access to the circulation, thromboxane B2 is the main circulating compound; however, assay of thromboxane B2 in plasma will be complicated or precluded by large artifactual production of the compound by platelets during sample collection.  相似文献   

15.
Indoleamine 2,3-dioxygenase (IDO) metabolizes L-tryptophan to L-kynurenine, promotes immunosuppression, and has been described as a consumer of superoxide. We discovered IDO expression in periaortic fat and tested the hypothesis that periarterial IDO functionally reduces agonist-induced contraction. Our model was the thoracic aorta, abdominal aorta, and superior mesenteric artery of the male Sprague-Dawley rat. Periaortic fat from the thoracic aorta stained intensely for IDO, the brown fat marker uncoupling protein-1, and oil red O as a general lipid marker. White fat around the mesenteric artery and abdominal aorta stained less for IDO; brown fat was less abundant. IDO activity (kynurenine-to-tryptophan ratio via HPLC) was detected in visceral and mesenteric artery fat (ratio: ~4) but was highest in perithoracic aortic fat (ratio: 10 ± 1.1). In isometric contractile experiments, periadventitial fat reduced ANG II-induced thoracic aortic (with fat: 34% of without fat) and mesenteric artery (with fat: 63% of without fat) maximal contraction. In contrast, periadventitial fat did not reduce agonist-induced contraction in the abdominal aorta. The IDO inhibitor 1-L-methyltryptophan (1-MT) reversed the fat-induced reduction of ANG II-induced contraction in the thoracic aorta but not in the mesenteric artery. The IDO metabolite kynurenine relaxed the thoracic aorta only at high (9 mM) concentrations, whereas the downstream metabolite quinolinic acid (1 mM) relaxed the contracted thoracic aorta (~80%). 1-MT did not correct the reduction in basal superoxide levels observed in the presence of perithoracic aortic fat. We conclude that IDO is an enzyme active primarily in brown fat surrounding the thoracic aorta and depresses aortic contractility.  相似文献   

16.
1. A comparison was made of the nature and intestinal intracellular distribution of the metabolites formed in vitamin D-deficient chicks from [4-(14)C]cholecalciferol and [1-(3)H]cholecalciferol. 2. The simultaneous administration of the two radioactive substances showed the presence in blood, liver, intestine, kidney and bone of cholecalciferol, its ester, 25-hydroxycholecalciferol and a further metabolite of cholecalciferol more polar than 25-hydroxycholecalciferol. The (3)H/(14)C ratios in these four radioactive components were the same as that of the dosed material (4.7:1) with the exception of the most polar material. The (3)H/(14)C ratio was lower in the fourth, most polar, metabolite (0.4:1-1.8:1) in all tissues examined, with the exception of blood. 3. In the chick intestine the polar metabolite accounted for almost 70% of the radioactivity in this tissue after a dose of 0.5mug. of [4-(14)C,1-(3)H]cholecalciferol. This polar metabolite from the intestine also had the lowest (3)H/(14)C ratio of all the tissues. It appears that in the chick intestine the polar metabolite reaches a maximum concentration of 1ng./g. of tissue, above which it cannot be increased irrespective of the dose of the vitamin. 4. The intestinal intracellular organelle with the highest concentration of (14)C radioactivity is the nucleus, and this radioactivity is almost entirely due to the polar metabolite with the lowered (3)H/(14)C ratio, in this case <0.2:1. It appears to be further localized in the chromatin of the nuclei. However, about half of the polar metabolite in the intestine is extranuclear. 5. Double-labelled 25-hydroxycholecalciferol was prepared and after its administration to vitamin D-deficient chicks the polar metabolite with the lowered (3)H/(14)C ratio was detected in liver, kidney, intestine, bone, muscle and heart. 6. None of the polar metabolite with the lowered (3)H/(14)C ratio was detected 16hr. after dosing with either the double-labelled vitamin or the double-labelled 25-hydroxycholecalciferol in blood and adipose tissue of vitamin D-deficient chicks, nor in the intestine, liver and kidney of supplemented birds. 7. The reasons for this loss of (3)H relative to (14)C are discussed in relation to possible chemical structures of this new polar metabolite.  相似文献   

17.
本文对电刺激家兔腹部的迷走神经外周端所引起的降压反应进行了研究。在121只家兔中的实验结果表明:电刺激腹部迷走神经外周端可引起动脉压、小肠和后肢的灌流压同时降低,而心率则无明显变化。这一降压反应发生时,小肠静脉血中的组织胺含量较刺激前明显升高,然后恢复;将小剂量的组织胺 H_1受体阻断剂扑尔敏、非乃根和 H_2受体阻断剂甲氰咪胍(Cimetidine)分别注入肠系膜上动脉均能减弱刺激腹部迷走神经外周端引起的动脉压和小肠灌流压的降低。心得安能削弱此降压反应,而阿托品无效;切断两侧内脏大神经能显著削弱刺激腹部迷走神经外周端引起的降压反应。此残余的降压反应在注入抗组织胺剂后完全消失。由此推论,刺激家兔腹部迷走神经外周端引起的降压反应是通过中枢和外周两方面因素的作用,使血管舒张,外周阻力降低而实现的。  相似文献   

18.
Intestinal levels of immunoreactive neurotensin (iNT) and neuromedin N (iNMN), as well as mRNA for the NT/NMN precursor, were elevated during the suckling period in rats. While transient expression of NT/NMN was observed at 1–5 days of age in the proximal small intestine and colon, NT/NMN levels in the ileum increased to peak at 10–20 days of age and then decreased to adult levels. The levels of these peptides were not elevated in the central nervous system and pituitary over this time period. Chromatographic analyses of jejunoileal extracts indicated that large molecular forms of iNT and iNMN were present, constituting 1.3% of total iNT and 56% of total iNMN, respectively. Treatment of the large forms with pepsin, which is known to generate the fully immunoreactive peptides, NT(3–13), NT(4–13), and NMN, increased immunoreactivity tenfold (iNT) and 1.2-fold (iNMN). Thus, large forms actually constituted 13% (iNT) and 60% (iNMN). Based upon its physicochemical properties, large molecular iNMN was tentatively identified as a 125 residue peptide with NMN at its C-terminus [i.e., rat prepro-NT/NMN(23–147)]. The properties of large molecular iNT were most similar to those predicted for the entire precursor [i.e., rat prepro-NT/NMN(23–169)]. These results indicate a) that enhanced expression of NT/NMN occurs in a tissue-specific manner in rats during the suckling period; b) that the pattern of precursor processing in intestine yields primarily NT and a large molecular form of NMN.  相似文献   

19.
Iron may induce oxidative damage to the intestinal mucosa by its catalyzing role in the formation of highly reactive hydroxyl radicals. This study aimed to determine iron-induced oxidative damage provoked by a single clinical dosage of ferrous sulfate and to elucidate the antioxidant defense mechanisms in the human small intestine in vivo. A double-lumen perfusion tube was positioned orogastrically into a 40-cm segment of the proximal small intestine in six healthy volunteers (25 +/- 5 yr). The segment was perfused with saline and subsequently with saline containing 80 mg iron as ferrous sulfate at a rate of 10 ml/min. Intestinal fluid samples were collected at 15-min intervals. Thiobarbituric acid reactive substances concentrations as an indicator of lipid peroxidation increased significantly from 0.07 microM (range, 0-0.33 microM) during saline perfusion to 3.35 microM (range, 1.19-7.27 microM) during iron perfusion (P < 0.05). Nonprotein antioxidant capacity increased significantly from 474 microM (range, 162-748 microM) to 1,314 microM (range, 674-1,542 microM) (P < 0.05). These data show that a single dosage of ferrous sulfate induces oxidative damage and the subsequent release of an antioxidant in the small intestine in vivo in healthy volunteers.  相似文献   

20.
Enterohepatic circulation of N-acetyl-leukotriene E4   总被引:1,自引:0,他引:1  
N-Acetyl-leukotriene E4, the end product of leukotriene C4 metabolism in the mercapturic acid pathway, was rapidly eliminated from the blood circulation into the bile of rats. Part of the N-acetyl-leukotriene E4 secreted from bile into the intestine underwent enterohepatic circulation. Leukotriene absorption occurred from the small intestine and from the colon. Biliary and urinary excretion within 5.5 h amounted to 15 and 2%, respectively, of the intraduodenally administered N-acetyl- 3H leukotriene E4 in animals anesthetized with ketamine. HPLC analyses indicated that 35% of the biliary radioactivity corresponded to unchanged N-acetyl-3H leukotriene E4, while 65% in bile and 100% in urine were polar metabolites. Enterohepatic circulation extends the biological half-life of N-acetyl-leukotriene E4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号