首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
研究表明能量可能是支配神经元活动的统一原则,编码能力与能量成本的比率最大化被认为是突触连接在选择性压力下改变的关键原则之一,这意味着突触范围内能量的变化与突触可塑性有关。为此,建立一个基于能量的突触可塑性模型。当突触后膜瞬时功率高于功率阈值时突触权重增加,反之突触权重下降。该模型可再现脉冲频率依赖可塑性以及脉冲时间依赖可塑性这两种主要的突触可塑性实验结果,并且和其他公认的突触可塑性模型相比具有优越性。结果表明,能量是影响突触可塑性的关键因素,对进一步理解突触连接的选择性和神经网络动力学特征提供了一个新思路。  相似文献   

2.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

3.
袁孝如 《生理学报》1993,45(6):528-535
行为学研究指出,伏核是阿片奖赏作用,和阿片成瘾的关键脑区域,为了在细胞水平上分析阿片作用机理,本文在大鼠伏核脑片制备上,应用细胞内电流箝记录,于不同神经元上分别观察三种阿片肽对膜电位和突触后电位的影响,研究结果表明:所试验的三种阿片肽均不影响神经元的膜电位和输入阻抗,却降低突触后电位;纳洛酮明显地翻转μ和δ受体激动剂的作用,对Kappa受体激动剂作用翻转不完全。上述结果提示:在伏核内,阿片肽的作用  相似文献   

4.
突触的可塑性与学习,记忆机制   总被引:11,自引:0,他引:11  
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。  相似文献   

5.
突触可塑性是神经系统所具有的重要特征,也是神经系统实现其功能的重要保障。按照持续的时间划分,突触可塑性可分为短时程突触可塑性和长时程突触可塑性。短时程突触可塑性包括短时程增强和短时程压抑两种类型。与长时程突触可塑性不同,短时程突触可塑性的产生主要依赖于神经递质释放概率的变化,其往往决定神经回路的信息处理和反应模式,不仅直接参与了对输入信号的识别和处理,而且还可对长时程突触可塑性的表达产生重要影响。  相似文献   

6.
神经元周围基质网络(perineuronal nets,PNNs)是一种特殊的细胞外基质结构,具有调节突触可塑性、稳定突触和保护神经元免受氧化应激损害等多种复杂功能.PNNs参与认知的发展过程,包括编码、巩固和更新记忆,在神经可塑性和记忆调节中发挥着重要作用,而认知功能障碍是阿尔茨海默病(Alzheimer's dis...  相似文献   

7.
神经元的突触可塑性与学习和记忆   总被引:7,自引:0,他引:7  
大量研究表明,神经元的突触可塑性包括功能可塑性和结构可塑性,与学习和记忆密切相关.最近,在经过训练的动物海马区,记录到了学习诱导的长时程增强(long term potentiation,LTP),如果用激酶抑制剂阻断晚期LTP,就会使大鼠丧失训练形成的记忆.这些结果指出,LTP可能是形成记忆的分子基础.因此,进一步研究哺乳动物脑内突触可塑性的分子机制,对揭示学习和记忆的神经基础有重要意义.此外,在精神迟滞性疾病和神经退行性疾病患者脑内记录到异常的LTP,并发现神经元的树突棘数量减少,形态上产生畸变或萎缩,同时发现,产生突变的基因大多编码调节突触可塑性的信号通路蛋白,故突触可塑性研究也将促进精神和神经疾病的预防和治疗.综述了突触可塑性研究的最新进展,并展望了其发展前景.  相似文献   

8.
Zhang L  Luo XP 《生理学报》2011,63(2):124-130
热性癫痫发作是儿童常见病,能损害认知功能,而突触可塑性和再可塑性(metaplasticity)是维系大脑认知功能的重要神经基础.本文通过脑片灌流和细胞外场电位记录术研究了热性癫痫发作大鼠海马齿状回外侧支的突触可塑性和再可塑性.制作对照组和热性癫痫发作组大鼠的脑切片后,记录电极置于齿状回外侧支的外分子层获取兴奋性突触后...  相似文献   

9.
大脑最基本性质是快速适应周围环境改变的能力,这主要是通过改变各个神经细胞之间的连接来实现的。有多种不同机制可以调节突触的强度,包括突触效率的稳态调节、突触增强和减弱的形态学表现以及钙在其中的作用。当开始了解这些突触改变的细胞生物学机制的时候,也应该考虑这种突触可塑性在完整大脑中的功能意义。因此,应用最新的成像手段来研究经验如何影响皮层环路中突触的改变,尤其是在体双光子显微技术可以在新皮层的单个神经元水平上研究形态和功能可塑性。这些实验将逐渐填补传统的细胞水平和系统水平研究之间的空白,并将有助于更全面充分地理解突触可塑性这种现象及其在皮层功能乃至动物行为中所起的作用。  相似文献   

10.
Xu XH  Pan YP 《生理科学进展》2006,37(2):138-140
海马锥体神经元树突上分布着多种电压依赖性钾离子通道,但这些通道在胞体和树突不同部位的分布密度以及在突触电活动中的功能意义各不相同。倒传递动作电位(b-AP)和兴奋性突触后电位(EPSP)是树突中常见的功能电信号。本文简要介绍了近年来海马锥体神经元树突上这些钾离子通道及其电活动的生理和病理学研究成果。  相似文献   

11.
 In this paper a phenomenological model of spike-timing dependent synaptic plasticity (STDP) is developed that is based on a Volterra series-like expansion. Synaptic weight changes as a function of the relative timing of pre- and postsynaptic spikes are described by integral kernels that can easily be inferred from experimental data. The resulting weight dynamics can be stated in terms of statistical properties of pre- and postsynaptic spike trains. Generalizations to neurons that fire two different types of action potentials, such as cerebellar Purkinje cells where synaptic plasticity depends on correlations in two distinct presynaptic fibers, are discussed. We show that synaptic plasticity, together with strictly local bounds for the weights, can result in synaptic competition that is required for any form of pattern formation. This is illustrated by a concrete example where a single neuron equipped with STDP can selectively strengthen those synapses with presynaptic neurons that reliably deliver precisely timed spikes at the expense of other synapses which transmit spikes with a broad temporal distribution. Such a mechanism may be of vital importance for any neuronal system where information is coded in the timing of individual action potentials. Received: 23 January 2002 / Accepted: 28 March 2002 Correspondence to: W.M. Kistler (e-mail: kistler@anat.fgg.eur.nl Fax: +31 10 408 5459)  相似文献   

12.
Natural patterns of activity and long-term synaptic plasticity   总被引:12,自引:0,他引:12  
Long-term potentiation (LTP) of synaptic transmission is traditionally elicited by massively synchronous, high-frequency inputs, which rarely occur naturally. Recent in vitro experiments have revealed that both LTP and long-term depression (LTD) can arise by appropriately pairing weak synaptic inputs with action potentials in the postsynaptic cell. This discovery has generated new insights into the conditions under which synaptic modification may occur in pyramidal neurons in vivo. First, it has been shown that the temporal order of the synaptic input and the postsynaptic spike within a narrow temporal window determines whether LTP or LTD is elicited, according to a temporally asymmetric Hebbian learning rule. Second, backpropagating action potentials are able to serve as a global signal for synaptic plasticity in a neuron compared with local associative interactions between synaptic inputs on dendrites. Third, a specific temporal pattern of activity--postsynaptic bursting--accompanies synaptic potentiation in adults.  相似文献   

13.
14.
Chizhov AV 《Biofizika》2002,47(6):1086-1094
A system of equations governing the activity of hippocampal neuron populations is proposed. This continual firing-rate model is aimed to simulate evoked potentials and synchronous wave activity of the neural tissue. The populations of excitatory and inhibitory neurons and the types of synaptic receptors are distinguished. The model is based on the idea of control and averaging of Hodgkin-Huxley equations, a simple model of a threshold elicitation of population action potential bursts, approximations of synaptic currents by the second-order differential equations, and hyperbolic partial derivative equation of axonal excitation propagation. The model was fitted to intracellular cordings of postsynaptic potentials and postsynaptic currents in CA1 of rat hippocampal slices.  相似文献   

15.
Spike timing dependent plasticity (STDP) likely plays an important role in forming and changing connectivity patterns between neurons in our brain. In a unidirectional synaptic connection between two neurons, it uses the causal relation between spiking activity of a presynaptic input neuron and a postsynaptic output neuron to change the strength of this connection. While the nature of STDP benefits unsupervised learning of correlated inputs, any incorporation of value into the learning process needs some form of reinforcement. Chemical neuromodulators such as Dopamine or Acetylcholine are thought to signal changes between external reward and internal expectation to many brain regions, including the basal ganglia. This effect is often modelled through a direct inclusion of the level of Dopamine as a third factor into the STDP rule. While this gives the benefit of direct control over synaptic modification, it does not account for observed instantaneous effects in neuronal activity on application of Dopamine agonists. Specifically, an instant facilitation of neuronal excitability in the striatum can not be explained by the only indirect effect that dopamine-modulated STDP has on a neuron’s firing pattern. We therefore propose a model for synaptic transmission where the level of neuromodulator does not directly influence synaptic plasticity, but instead alters the relative firing causality between pre- and postsynaptic neurons. Through the direct effect on postsynaptic activity, our rule allows indirect modulation of the learning outcome even with unmodulated, two-factor STDP. However, it also does not prohibit joint operation together with three-factor STDP rules.  相似文献   

16.
The discovery that dendrites of neurons in the mammalian brain possess the capacity for protein synthesis stimulated interest in the potential role of local, postsynaptic protein synthesis in learning-related synaptic plasticity. But it remains unclear how local, postsynaptic protein synthesis actually mediates learning and memory in mammals. Accordingly, we examined whether learning in an invertebrate, the marine snail Aplysia, involves local, postsynaptic protein synthesis. Previously, we showed that the dishabituation and sensitization of the defensive withdrawal reflex in Aplysia require elevated postsynaptic Ca(2+), postsynaptic exocytosis, and functional upregulation of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. Here, we tested whether the synaptic facilitation that underlies dishabituation and sensitization in Aplysia requires local, postsynaptic protein synthesis. We found that the facilitatory transmitter, serotonin (5-HT), enhanced the response of the motor neuron to glutamate, the sensory neuron transmitter, and this enhancement depended on rapid protein synthesis. By using individual motor neurites surgically isolated from their cell bodies, we showed that the 5-HT-dependent protein synthesis occurred locally. Finally, by blocking postsynaptic protein synthesis, we disrupted the facilitation of the sensorimotor synapse. By demonstrating its critical role in a synaptic change that underlies learning and memory in a major model invertebrate system, our study suggests that local, postsynaptic protein synthesis is of fundamental importance to the cell biology of learning.  相似文献   

17.
The synaptic plasticity is a background for learning and memory. Identifiable synapses that are the synapses between individually identifiable neurons are a very convenient model for studying plasticity. Synapses between the interoceptive mechanosensory neurons and the command neurons of the withdrawal behavior were identified in the Helix lucorum brain. It was shown that synaptic plasticity estimated by the dynamics of the elementary postsynaptic potentials elicited by single presynaptic spikes differed from the synaptic plasticity estimated by the dynamics of compound synaptic responses of the same neurons to sensory stimulation. Habituation and heterosynaptic facilitation phenomena are discussed in terms of the dynamics of the elementary postsynaptic potentials.  相似文献   

18.
Effects of rectification on synaptic efficacy.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have investigated the effects of postsynaptic membrane properties on the shape of synaptic potentials generated by time-varying synaptic conductances. We used numerical simulation techniques to model cells of several different geometrical forms, from an isopotential sphere to a neuron with a soma and a dendritic tree. A variety of postsynaptic membrane properties were tested: (a) a passive resistance-capacitance membrane, (b) a membrane represented by the Hodgkin and Huxley (HH) equations, and (c) a membrane that was passive except for a delayed rectification represented by a voltage- and time-dependent increase in GK. In all cases we investigated the effects of these postsynaptic membrane properties on synaptic potentials produced by synaptic conductances that were fast or slow compared with the membrane time constant. In all cases the effects of postsynaptic rectification occurred on postsynaptic potentials of amplitudes as low as 1 mV. The HH model (compared with the passive model) produced an increased peak amplitude (from the increase in GNa) but a decreased half-width and a decreased time integral (from the increase in GK). These effects of the HH GK change were duplicated by a simple analytical rectifier model.  相似文献   

19.
The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp"), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms.  相似文献   

20.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号