首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
工程纳米材料因其独特的物理化学性质被广泛应用于生产和生活中,但其潜在的风险正逐渐引起越来越多研究者的关注。目前国内外的研究主要探讨了工程纳米材料对模式微生物的毒性效应,但是对污水处理微生物的潜在影响尚缺乏系统和完整的报道。因此,本文综述了常见纳米材料对污水生物处理的影响,如碳、氮、磷的去除、甲烷化以及功能微生物种群结构演变等;同时还探讨了两种削减纳米银颗粒毒性的途径。综述内容为深入研究纳米材料对污水生物处理的潜在影响奠定了重要的理论基础。  相似文献   

2.
人工纳米材料在水体中的环境行为与生物环境安全问题成为环境科学领域研究的热点,人工纳米材料与生物膜相互作用机制和影响因素是其中迫切需要研究解决的关键科学问题。本文主要探讨了人工纳米材料释放进入到水体中后对生物膜细菌活性、微生物群落结构、净污活性等的毒性效应,分析了人工纳米材料对生物膜的毒性作用机制及其影响因素,同时探讨了生物膜对人工纳米材料的吸附作用及机理,为深入研究人工纳米材料与生物膜的相互作用机制提供了重要的理论基础。  相似文献   

3.
王赫  崔岱宗  杨典  赵敏 《微生物学报》2021,61(11):3391-3400
硫化镉纳米粒子(cadmium sulfide nanoparticles,CdS NPs)是一种重要的半导体,具有突出的光电特性、可调带隙和化学稳定性,在分析化学、生物医学、荧光成像和生物传感器等方面具有潜在应用价值。生物合成CdS NPs具有可控、低成本、环境友好等优势而被广泛研究。然而CdS NPs本身兼具纳米材料毒性及重金属硫化物毒性,其对原核微生物的毒性研究受到广泛关注。本文以大肠杆菌为例,对CdS NPs在原核生物细胞内的毒性机理研究进展进行了综述,包括CdS NPs的生物合成机制、CdS NPs对大肠杆菌的毒害作用以及大肠杆菌对该毒害作用的防御机制,着重论述了细菌在合成CdS NPs过程中Cd2+及CdS对合成细菌本身的毒理作用及该细菌所产生的相应应激机制。本文旨在更好、更全面地评估CdS NPs的毒性,促进抗CdS NPs的原核生物在相关领域的发展和应用。  相似文献   

4.
张晓蓉 《微生物学报》2011,51(3):297-304
基于发展纳米材料"绿色合成技术"重要性,生物合成纳米材料已成为纳米合成技术研究热点。微生物具有廉价、易培养、繁殖快等优点被应用于多种纳米材料的生物合成研究,成为生物合成纳米材料的重要生物类群。本文综述了细菌、放线菌、酵母菌以及真菌等微生物应用于纳米生物合成技术的发展;着重评述了纳米材料微生物合成生物方法、纳米材料微生物合成相关机制、纳米材料形貌和尺寸微生物调控合成方法以及应用研究进展;并对纳米材料微生物合成技术未来发展趋势进行了展望。  相似文献   

5.
杨春  朱道银 《微生物与感染》2005,28(5):21-22,27
颗粒溶素是人类自然杀伤细胞和细胞毒性T淋巴细胞胞质颗粒中的可溶性分子,是一种天然的抗菌肽,具有抗病原微生物、抗肿瘤等多种生物活性.本文就颗粒溶素的溶菌机制,抗微生物、抗肿瘤作用及评估细胞免疫等方面的研究进展及其应用作一综述.  相似文献   

6.
随着纳米科技的发展,纳米材料在各领域的应用日益增多。金属及金属氧化物纳米材料因其独特的物化性质,为多种疾病的诊治提供了崭新的解决途径。其中,贵金属金、银及应用最为广泛的铁所形成的纳米材料在医学领域应用甚广。纳米金及纳米银具有优异的抗菌效能,广泛用于伤口敷料、化妆品、食品等的制造中。除此之外,纳米金、纳米银及含铁的磁性纳米颗粒也用于疾病诊治方面,如肿瘤的诊断和治疗、生物传感器、生物成像等。但是,大部分金属纳米材料可对机体产生不良作用,因而了解金属纳米材料的毒性显得非常重要。为了在医学应用中更有效地利用金属纳米材料,必须探究其大小、表面化学、特殊性质及毒性。本文总结了这几种金属纳米材料的医学用途,概述了它们的体内外毒性,并分析了可能的毒性作用机制。  相似文献   

7.
【目的】纳米氧化铈作为一种应用普遍的人工纳米材料,其生物毒性和环境效应得到了越来越多的重视。尝试从微生物代谢产物的角度,解读纳米氧化铈对活性污泥微生物的影响规律和过程。【方法】在实验室活性污泥系统中投加不同质量浓度纳米氧化铈,研究纳米氧化铈短期作用下微生物胞外聚合物(EPS)和溶解性微生物产物(SMP)这两类主要的微生物代谢产物含量和组分的变化规律。【结果】短期作用下,EPS和SMP的总量都随着纳米氧化铈浓度的增加而增加。低浓度纳米CeO_2不会导致活性污泥中松散型胞外聚合物(LB-EPS)、紧密型胞外聚合物(TB-EPS)含量和组分的显著改变。高浓度纳米CeO_2(25 mg/L以上)作用下TB-EPS含量和组分不受影响,而LB-EPS中多糖和蛋白质为抵抗纳米CeO_2毒性而增多。EPS分层组分含量显著提高,且LB-EPS的增幅显著高于TB-EPS增幅。当纳米氧化铈浓度为50 mg/L时,相较于空白对照组,蛋白质和多糖增幅分别达到35.18%和46.57%。当纳米氧化铈超过25 mg/L以上时,SMP不仅出现蛋白质,多糖和腐殖酸的含量也明显增加。【结论】SMP中蛋白质的产生,可能会与纳米材料相结合,以减小纳米材料的毒性。当纳米氧化铈浓度较低时,EPS的吸附作用会抵制其进入细胞内,当纳米氧化铈浓度较高时,刺激细胞产生更多EPS吸附纳米CeO_2,形成更厚的外部屏障层保护细胞。EPS和SMP的共同作用,构成了微生物细胞对纳米CeO_2的毒性抵抗机制。  相似文献   

8.
就果蔬采后诱导抗性因子——生物型和非生物型因子(如微生物、物理因子、化学物质、天然物质等)在果蔬采后病害防治中的应用及可能的诱导机制作了介绍。  相似文献   

9.
甲基汞是一种强亲脂性、高神经毒性的有机汞化合物,可以通过生物富集或生物放大造成人类甲基汞暴露。环境中甲基汞的产生主要是厌氧微生物所调控的无机汞的甲基化。主流观点认为厌氧微生物对汞的甲基化是一种细胞内反应,因此,甲基汞的产生速率不仅与环境中具有汞甲基化能力的厌氧微生物的存在与活性相关,同时也与无机汞在微生物细胞中的跨膜运输过程有着重要联系。要明确无机汞经微生物甲基化的机制,就必须了解无机汞被微生物细胞生物吸收的过程,即无机汞在微生物中的跨膜运输路径。目前研究认为该过程主要有Mer抗汞操纵子转运体系、被动扩散、促进扩散和主动运输4种路径。本综述主要围绕无机汞被微生物细胞生物吸收的这4种路径展开,将系统介绍科学界对这4种路径的最新研究进展,并对相关研究进行展望,指出无机汞经促进扩散或主动运输进入到微生物细胞内将是未来研究的重点。  相似文献   

10.
真菌毒素是一类丝状真菌次级代谢产物,为高毒性天然污染物,在农产品生产和贮运过程中难以完全消除,污染率高、危害性大,已成为农产品安全主要风险因子之一。农产品中主要真菌毒素生物解毒研究对污染原料再利用、动物健康养殖和食品安全具有重要意义。研究表明,微生物菌株或微生物酶对真菌毒素可进行高效地降解转化或生物吸附。近十年,主要真菌毒素生物解毒研究已逐渐成为真菌毒素污染控制领域的关注重点,但关于生物降解机制的研究仍处于初步发展阶段,很多微生物菌种的降解转化机制仍不清楚。本文将从农产品中主要真菌毒素生物降解菌种、生物解毒酶及作用方式等方面进行总结,以期为生物解毒深入研究及产业化技术发展提供思路。  相似文献   

11.
14C-labeled benzo[a]pyrene (BaP) was used as a model-compound for polycyclic aromatic hydrocarbons (PAH) in order to assess the effect of photolytic pretreatment on the subsequent fate of BaP in sewage sludge and soil test systems. Photolysis was performed in methanolic solution with or without 0.1 M H2O2, under either UV light (300 nm) or natural sunlight. The presence of H2O2 greatly enhanced the rate of photolysis both with UV and with natural sunlight. Intact BaP resisted biodegradation in both test systems. Photolysis transformed BaP to polar materials that were subject to increased mineralization and binding in both biological test systems. As shown by the Ames assay, photolysis decreased the mutagenicity of BaP to test strains TA98 and TA104 only moderately. The photolysate had an increased acute toxicity and lost its need for activation by S-9 enzymes. However, during subsequent incubation in soil or sewage sludge, mutagenicity decreased rapidly by one to two orders of magnitude and acute toxicity disappeared due to the mineralization and binding of photoproducts to humic materials. Photolysis of BaP and similar PAH compounds represents a useful treatment option that could be applied to certain PAH-containing petroleum refinery sludge and to coal tar residues in order to facilitate their detoxification and environmentally safe disposal.  相似文献   

12.
Photolysis primes biodegradation of benzo[a]pyrene.   总被引:2,自引:0,他引:2       下载免费PDF全文
14C-labeled benzo[a]pyrene (BaP) was used as a model-compound for polycyclic aromatic hydrocarbons (PAH) in order to assess the effect of photolytic pretreatment on the subsequent fate of BaP in sewage sludge and soil test systems. Photolysis was performed in methanolic solution with or without 0.1 M H2O2, under either UV light (300 nm) or natural sunlight. The presence of H2O2 greatly enhanced the rate of photolysis both with UV and with natural sunlight. Intact BaP resisted biodegradation in both test systems. Photolysis transformed BaP to polar materials that were subject to increased mineralization and binding in both biological test systems. As shown by the Ames assay, photolysis decreased the mutagenicity of BaP to test strains TA98 and TA104 only moderately. The photolysate had an increased acute toxicity and lost its need for activation by S-9 enzymes. However, during subsequent incubation in soil or sewage sludge, mutagenicity decreased rapidly by one to two orders of magnitude and acute toxicity disappeared due to the mineralization and binding of photoproducts to humic materials. Photolysis of BaP and similar PAH compounds represents a useful treatment option that could be applied to certain PAH-containing petroleum refinery sludge and to coal tar residues in order to facilitate their detoxification and environmentally safe disposal.  相似文献   

13.
Base-modified carborane-containing nucleosides such as 5-o-carboranyl-2'-deoxyuridine (CDU) when combined with neutrons have potential for the treatment of certain malignancies. Lack of toxicity in various cells, high accumulation in cancer cells and intracellular phosphorylation are desirable characteristics for modified nucleosides used in boron neutron capture therapy (BNCT) for brain tumors and other malignancies. The aim of this work was to synthesize the two beta-enantiomers of several 5-o-carboranyl-containing nucleosides. These derivatives may possess favorable properties such as high lipophilicity, high transportability, the ability to be phosphorylated, and resistance to catabolism. Beta-isomers of 2',3'-dihydroxynucleosides and analogues containing a heteroatom in the sugar moiety were also synthesized. Carboranyl pyrimidine nucleosides were prepared either from the parent beta-D-nucleoside, beta-L-nucleoside, or by a coupling reaction. The dioxolane derivative 7 was prepared by a coupling reaction between protected 5-o-carboranyluracil (8, CU) and the corresponding protected heterocycle. Specific catalysts were used during the N-glycosylation process to favor the formation of the beta-isomer. Biological evaluation of these new chiral 5-o-carboranyl pyrimidine derivatives indicated that most of these compounds have low toxicity in a variety of normal and malignant cells and achieved high cellular levels in a lymphoblastoid cell line. Increasing the number of hydroxyl groups on the sugar moiety decreased the cellular accumulation and serum binding to different extents. Five compounds were identified for further biological evaluation as potential agents for BNCT.  相似文献   

14.
A synthetic approach to analogues of the terpenoid natural product antheminone A is described which employs (?)-quinic acid as starting material. A key conjugate addition step proved to be unpredictable regarding its stereochemical outcome however the route allowed access to two diastereoisomeric series of compounds. The results of biological assay of the toxicity of the target compounds towards non-small-cell lung cancer cell line A549 are reported.  相似文献   

15.
Aims:  To assess the changes in acute toxicity and biodegradation of benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) compounds in soil over time and compare the performances of biological and chemical techniques.
Methods and Results:  Biological methods ( lux -based bacterial biosensors, basal respiration and dehydrogenase activity) were related to changes in the concentration of the target compounds. There was an initial increase in toxicity determined by the constitutively expressed biosensor, followed by a continual reduction as degradation proceeded. The biosensor with the BTEX-specific promoter was most induced when BTEX concentrations were highest. The treatment with nutrient amendment had a significant increase in microbial activity, while the sterile control produced the lowest level of degradation.
Significance and Impact of the Study:  Luminescent biosensors were able to monitor changes in contaminant toxicity and bioavailability in aqueous extracts from BTEX-impacted soils as degradation proceeded. The integration of biological tests with chemical analysis enables a fuller understanding of the biodegradation processes occurring at their relative rates.
Conclusions:  The biological methods were successfully used in assessing the performance of different treatments for enhancing natural attenuation of BTEX from contaminated soils. While, chemical analysis showed biodegradation of parent BTEX compounds in biologically active soils, the biosensor assays reported on changes in bioavailability and potentially toxic intermediate fractions as they estimated the integrative effect of contaminants.  相似文献   

16.
Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.  相似文献   

17.
草履虫 Paramoecium caudatum是动物学教学最常用的实验材料之一,一般采用人工方法培养提高草履虫的纯度,以便于应用于教学和研究.本文记述了11种培养方法和8种观察草履虫的方法,并对其中的一些做了一定的改进,旨在为生物实验教学及科学研究提供参考.在培养过程中除应关注所用的培养物质外,还应综合考虑pH、温度、天敌、有机化合物、金属离子对培养过程的影响.  相似文献   

18.
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.  相似文献   

19.
A technique for permanently capturing a replica impression of biological cells has been developed to facilitate analysis using nanometer resolution imaging tools, namely the atomic force microscope (AFM). The method, termed Bioimprint™, creates a permanent cell 'footprint' in a non-biohazardous Poly (dimethylsiloxane) (PDMS) polymer composite. The transfer of nanometer scale biological information is presented as an alternative imaging technique at a resolution beyond that of optical microscopy. By transferring cell topology into a rigid medium more suited for AFM imaging, many of the limitations associated with scanning of biological specimens can be overcome. Potential for this technique is demonstrated by analyzing Bioimprint™ replicas created from human endometrial cancer cells. The high resolution transfer of this process is further detailed by imaging membrane morphological structures consistent with exocytosis. The integration of soft lithography to replicate biological materials presents an enhanced method for the study of biological systems at the nanoscale.  相似文献   

20.
《Free radical research》2013,47(4):231-236
Usually the toxicity of superoxide is attributed lo its ability to reduce metal ions and subsequently reoxidation of the metal by hydrogen peroxide yields deleterious oxidizing species. As many other nontoxic biological reductants reduce metal compounds, we suggest that part of the mechanism of superoxide toxicity results from its ability to oxidize metal ions bound to biological targets, which subsequently degrade the target via an intramolecular electron Transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号