首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
[目的] Glarea lozoyensis是抗真菌药物卡泊芬净的产生菌,其突变菌株ATCC 74030的线粒体基因组已被报道。我们此前的研究发现诱变剂能引起该菌某些细胞核基因的突变,但诱变剂是否也能引起线粒体DNA序列的改变并不清楚。[方法] 组装野生型菌株ATCC 20868的线粒体基因组,并与发表的突变型菌株ATCC 74030的线粒体基因组进行比较。通过PCR验证野生和突变菌株线粒体基因组间表现差异之处,并利用正确的线粒体基因组序列进行新的分析。[结果] 我们成功组装出野生型菌株ATCC 20868的线粒体基因组,通过比较其与发表的ATCC 74030的线粒体基因组序列,发现存在6处单核苷酸变异位点和2处具有长度差异的区域。然而,随后的PCR验证和序列比较并没有发现2个菌株间存在这些差异。最初观察到的碱基差异是因为发表的ATCC 74030线粒体基因组存在序列错误。有趣的是,在Glarea lozoyensis的线粒体基因组中,我们发现存在3个具有内含子的tRNA基因和1个rnpB基因。同时,该菌线粒体基因组中存在多种重复序列,在其线粒体和细胞核基因组间也存在明显的DNA片段重复事件。[结论] 诱变剂没有引起G. lozoyensis线粒体DNA的任何改变;发表的ATCC 74030的线粒体基因组存在序列错误。我们报道G. lozoyensis正确的线粒体基因组序列,并且发现该菌线粒体和细胞核基因组间频繁的基因交流。  相似文献   

2.
张姝  崔宁波  赵宇翔  张永杰 《微生物学报》2019,59(12):2346-2356
【目的】分析蛹虫草是否存在核内线粒体DNA片段,比较蛹虫草线粒体DNA与细胞核DNA的碱基变异程度及所反映的菌株间的系统发育关系。【方法】通过本地BLAST或LAST对蛹虫草线粒体基因组和核基因组进行序列相似性搜索;从10个已知线粒体基因组的蛹虫草菌株中分别扩增7个细胞核蛋白编码基因片段,并与其在14个线粒体蛋白编码基因上的碱基变异情况进行比较。【结果】蛹虫草核基因组中存在5处较短的核内线粒体DNA片段,总长只有278bp。蛹虫草核DNA的变异频率整体上高于线粒体DNA。核DNA和线粒体DNA所反映的蛹虫草菌株间的系统发育关系存在显著差异。【结论】蛹虫草线粒体DNA与核DNA间不存在长片段的基因交流,二者变异频率不同,所反映的蛹虫草菌株间的系统发育关系也有差异。本研究增加了对蛹虫草线粒体与细胞核DNA进化关系的认识。  相似文献   

3.
【目的】鉴定洛斯里被毛孢OWVT-1菌株的线粒体基因组,验证公布的USA-87-5菌株线粒体基因组中的错误,对洛斯里被毛孢正确的线粒体基因组序列进行注释并开展不同被毛孢物种间的比较线粒体基因组学分析。【方法】借助DNA高通量测序数据并通过必要的Sanger测序组装OWVT-1的线粒体基因组。通过PCR验证OWVT-1与公布的USA-87-5线粒体基因组序列差异的真实性。利用多种生物信息方法分析和注释洛斯里被毛孢的线粒体基因组。【结果】公布的洛斯里被毛孢USA-87-5菌株的线粒体基因组存在几处序列错误,包括3处长片段的插入缺失和多处短片段的插入缺失。实际上,洛斯里被毛孢USA-87-5与OWVT-1菌株的线粒体基因组序列完全相同。该菌的线粒体基因组全长62949 bp,在7个基因中共插入13个内含子,部分内含子和基因间区显现出序列退化的特征。洛斯里被毛孢、明尼苏达被毛孢、线虫被毛孢的线粒体基因组具有较强的共线性关系。除一些独立的ORF外,核心蛋白编码基因、rRNA基因和tRNA基因的排列顺序非常保守。基因间区的长短是影响3种被毛孢线粒体基因组大小最主要的因素。【结论】公布的洛斯里被毛孢USA-87-5菌株线粒体基因组中存在序列错误。本文新报道了OWVT-1菌株的线粒体基因组,并进行注释和比较线粒体基因组学分析。  相似文献   

4.
摘要:【目的】枯草芽孢杆菌ATCC 13952是一株肌苷工业生产菌株。为深入研究ATCC 13952菌株积累肌苷的分子机制以及为进一步分子育种研究提供序列背景信息,有必要解析ATCC 13952菌株的基因组序列信息。【方法】本研究采用高通量测序和Sanger测序相结合对ATCC 13952菌株进行全基因组测序,然后使用相关软件对测序数据进行基因组组装、基因预测与功能注释、GO/COG 聚类分析、共线性分析等。【结果】枯草芽孢杆菌ATCC 13952整个基因组大小为3876276 bp,GC含量为45.8%,序列已提交至GenBank 数据库,登录号为CP009748。比较基因组及嘌呤代谢相关基因分析结果显示:枯草芽孢杆菌ATCC 13952与其他几株芽孢杆菌具有较好的基因组共线性关系,嘌呤代谢相关基因编码的蛋白与标准菌株比较发生了一些缺失和突变。【结论】本研究首次报道了一株肌苷生产菌枯草芽孢杆菌ATCC 13952的全基因组序列,分析了基因组基本特征,初步探讨了该菌株积累肌苷的分子机制,为后续的进一步分子育种提供了理论基础。  相似文献   

5.
【目的】明确球孢白僵菌种内线粒体基因组的分化程度。【方法】从GenBank下载已知的球孢白僵菌6个菌株线粒体基因组序列,详细分析基因组的组成结构,比较外显子区、内含子区和基因间区的碱基变异情况,分析菌株间的系统发育关系。【结果】球孢白僵菌不同菌株的线粒体基因组大小为28.8–32.3 kb,都有14个常见的核心蛋白编码基因、2个rRNA基因和25个tRNA基因,具有很强的共线性关系。但是,不同菌株含有的线粒体内含子数目存在差异(2–5个/菌株),在cox1、cox2和nad1基因中表现出内含子插入/缺失多态性,这是导致线粒体基因组大小变化的主要因素。对外显子、内含子和基因间区的碱基变异情况进行分析,发现内含子和基因间区相对变异较大,而外显子区相对变异较小。系统发育分析发现,这些球孢白僵菌菌株以很高的支持度聚在一起,具有相同内含子分布规律的菌株也具有较近的聚类关系。【结论】本研究首次报道球孢白僵菌因内含子数目不同、插入缺失突变和单核苷酸变异等在线粒体基因组上表现出较大程度的遗传分化,为认识真菌种内线粒体基因组分化提供了新的证据。  相似文献   

6.
【背景】由于甲基营养菌被发现的时间较短,而且可以生产吡咯喹啉醌(pyrroloquinoline quinone,PQQ)的甲基杆菌属细菌只有少数菌株的全基因组序列被公布,增加了该类细菌基因组学和生物代谢途径研究的难度。【目的】将本实验室筛选的PQQ生产菌经多种诱变方式处理,用于提高PQQ的发酵产量。对高产突变菌株进行全基因组解析,以探究甲基杆菌PQQ合成的分子机制,为后续分子育种提供序列背景信息。【方法】将野生型PQQ生产菌株进行紫外诱变、亚硝基胍诱变、甲基磺酸乙酯诱变、硫酸二乙酯诱变和紫外-氯化锂复合诱变。将突变菌株利用PromethION三代测序平台和MGISEQ-2000二代测序平台测序,然后进行组装和功能注释。组装得到的全基因组序列与模式菌株扭脱甲基杆菌AM1 (Methylobacterium extorquens AM1)进行比较基因组学分析。【结果】经11轮诱变获得一株突变菌株NI91,其PQQ产量为19.49mg/L,相较原始菌株提高44.91%。突变菌株NI91的基因组由一个5 409 262 bp的染色体组成,共编码4 957个蛋白,与模式菌株M. extorqu...  相似文献   

7.
【目的】研究铜绿假单胞菌弹性蛋白水解能力相关基因。【方法】应用人工Mu转座技术构建铜绿假单胞菌野生型菌株PA68的转座突变文库,从2000多个突变子中筛选得到4株弹性蛋白水解能力改变的突变子,并通过克隆及测序获得转座子插入位点侧翼的序列。将铜绿假单胞菌弹性蛋白酶结构基因lasB的转录启始区序列整合入载体pDN19lacΩ并将该重组质粒电转化入野生型菌株PA68及4个突变株中,对报告基因在不同菌株中的表达水平进行测定。【结果】发现4个突变株中Mu转座子分别插入lasA、galU、xcpZ和ptsP 4个基因。ptsP基因失活的突变株中,lasB基因的转录水平是野生型菌株的7%,xcpZ和lasA基因的失活使lasB基因的转录水平分别降低为野生株的54%和75%,galU基因的插入失活使lasB基因的转录上升了1倍。【结论】推测ptsP和galU基因很可能直接或间接地调控着弹性蛋白酶的生物合成。  相似文献   

8.
摘要:【目的】从蛹虫草线粒体DNA中寻找适于遗传多样性研究的分子标记。【方法】通过PCR扩增和序列分析,比较了20个蛹虫草菌株在12个线粒体DNA片段和3个细胞核DNA片段上的序列变异。【结果】蛹虫草在线粒体DNA上的变异水平高于核DNA,主要表现为线粒体基因内含子的插入缺失多样性和较多的碱基变异位点。不同线粒体DNA片段的变异水平也有差异,而且内含子蛋白比外显子编码的蛋白质更易发生氨基酸的改变。增加使用的分子标记数目,其所揭示的遗传多样性程度也在逐渐提高。【结论】我们依 次推荐nad3-cox2、cox2-nad5、cox2、cox3、cob和cox1这6个线粒体DNA位点用于今后蛹虫草遗传多样性或群体遗传结构的分析。  相似文献   

9.
【目的】新金分枝杆菌(Mycobacterium neoaurum)MN4是1株经诱变育种获得的高产雄烯二酮,并且能够耐受高浓度底物植物甾醇的突变菌株。为深入研究MN4菌株耐底物的机制及雄烯二酮的生物合成途径,有必要解析MN4菌株的全基因组序列信息。【方法】本研究采用高通量测序技术对MN4进行全基因组测序,然后使用相关软件对测序数据进行基因组装、基因预测与功能注释、COG聚类分析以及次级代谢产物合成基因簇预测等。【结果】新金分枝杆菌MN4基因组装获得33个Contigs,整个基因组大小为5.39 Mb,GC含量为66.9%,编码4920个蛋白基因,序列提交至Gen Bank数据库,登录号为JXYZ00000000。【结论】本研究首次报道了1株高产雄烯二酮菌株MN4的全基因组序列,分析了基因组的基本特征,初步解析了该菌株降解植物甾醇生产雄烯二酮的关键基因,将为MN4的功能基因组学研究及相关次级代谢产物的生物合成途径与异源表达研究提供基础。  相似文献   

10.
王亚鸽  闫鹤 《微生物学通报》2019,46(5):1100-1107
【背景】单增李斯特菌是一种重要的条件致病菌,不同型别菌株在宿主范围和毒力等方面存在差异。内化素基因inlA在入侵宿主上皮细胞中具有重要作用。【目的】研究单增李斯特菌序列型(Sequence type,ST)为477菌株的基因组特征及内化素基因inlA的遗传多样性。【方法】使用相关软件对测序数据进行多位点序列分型(Mutilocussequencetyping,MLST)、单核苷酸多态性(Single nucleotide polymorphism,SNP)及基因inlA遗传多样性分析。【结果】MLST进化分析结果显示,分离自不同国家的菌株具有较近亲缘关系。以分离自中国食品的ST477型菌株为参考菌株,通过SNP分析表明,加拿大食品中的ST9型菌株发生的突变位点最少(91-93个)。7株复合克隆系(Clonal complex,CC)为9的菌株其inlA基因序列间核苷酸相似性为29.8%-100%。【结论】初步分析了ST477型别菌株的进化及基因组特征,同时研究了部分CC9克隆系菌株inlA基因突变情况,为研究ST477型别菌株的进化及单增李斯特菌的毒力提供基础数据。  相似文献   

11.
【背景】绿针假单胞菌(Pseudomonas chlororaphis) GP72是一株可生产吩嗪类抗生素吩嗪-1-羧酸(PCA)和2-羟基吩嗪(2-OH-PHZ)的生防根际促生菌。基因组比对发现GP72菌中存在aurI/aurR双元调控系统。【目的】研究该系统对GP72中吩嗪类物质的调控作用。【方法】将aurI基因在大肠杆菌中异源表达,用紫色杆菌CV026和根癌农杆菌NTL4做显色实验。构建基因敲除菌株和回补菌株,发酵测量突变株的生长曲线与总吩嗪产量。构建转录融合质粒,测定吩嗪合成基因启动子的转录水平。【结果】显色实验显示,aurI能产生多种信号分子,使CV026显紫色、NTL4显蓝色。分别单独敲除aurI和aurR基因,同时敲除aurI/aurR基因,吩嗪产量均会升高,而回补菌株吩嗪产量降为野生型水平。β-半乳糖苷酶活性测定结果显示,突变株的酶活比野生型高。【结论】aurI/aurR负调控GP72的吩嗪合成,通过抑制吩嗪合成启动子的转录而影响吩嗪类物质的产量。  相似文献   

12.
【背景】枝孢菌SYC63是一株具有重寄生作用和抗菌活性的潜在生防菌株,目前尚无研究报道该菌株的全基因组序列,因此限制了其开发与利用。对该菌株进行基因组测序与分析,将进一步了解其重寄生的分子机制,为其在生物防治上的应用奠定研究基础。【目的】解析枝孢菌SYC63基因组序列信息,初步探究该菌的重寄生作用机制。【方法】利用二代高通量测序平台对枝孢菌SYC63进行全基因组测序,运用相关软件对其测序数据进行基因组组装、基因功能注释、预测次级代谢产物合成基因簇并分析重寄生相关的碳水化合物酶类基因等。【结果】基因组组装后共得到17个contigs,总长度为31 912 211 bp,GC含量为52.80%,预测到12 327个编码基因。其中,4 029、949和6 595个基因分别能在KEGG、COG和GO数据库中被注释到,同时还预测到25个次级代谢产物合成基因簇。对重寄生机制相关的碳水化合物酶类进行分析并与重寄生菌株(拟盘多毛孢菌、木霉及盾壳霉)比较,发现该菌具有较多的糖苷水解酶和糖脂酶基因,而且细胞壁降解酶类基因经锈菌孢子壁处理后在转录组测序中显著上调表达,初步分析了该菌与重寄生木霉在分子水平上的...  相似文献   

13.
【目的】解析出芽短梗霉CCTCC M2012223的基因组序列信息,分析其代谢产物聚苹果酸、黑色素、普鲁兰多糖合成相关基因,为深入研究遗传多样性和代谢工程改造提供序列背景信息。【方法】使用Illumina Hi Seq高通量测序平台对出芽短梗霉CCTCC M2012223菌株进行全基因组测序,并对测序数据进行序列拼接,基因预测与功能注释,COG/GO聚类分析,比较基因组学分析等。下载其他5株出芽短梗霉基因组序列,比较分析6株菌的种内同源基因、全基因组进化以及代谢产物合成相关基因。【结果】出芽短梗霉CCTCC M2012223基因组序列全长30756831 bp,GC含量47.49%,编码9452个基因。比较基因组分析表明出芽短梗霉CCTCC M2012223的基因组组装长度最长,6株菌的同源基因数达到7092个,普鲁兰多糖和聚苹果酸合成相关基因的蛋白序列有很高的保守性。出芽短梗霉CCTCC M2012223和Aureobasidium pullulans var.melanogenum亲缘关系最近,而这2株菌的黑色素合成相关基因的蛋白序列有一些插入和突变。【结论】本研究解析了出芽短梗霉CCTCC M2012223的基因组序列信息,获得黑色素、普鲁兰多糖和聚苹果酸合成相关基因,为后续的代谢机制解析和改造提供相关依据。  相似文献   

14.
【目的】研究小麦赤霉病菌对多菌灵的抗药性与a2-微管蛋白基因的相关性。【方法】比较对多菌灵不同敏感性水平菌株间在药剂作用下的形态学特征及其a2-微管蛋白基因异同。【结果】当敏感菌株和田间中抗菌株均在各自EC50 和EC90浓度作用下,两者分生孢子芽管和初生菌丝均表现畸形,肿胀,分支增多。根据小麦赤霉病菌核基因组测序菌株NRRL31 084(PH-1)的a2-微管蛋白基因核苷酸序列设计4对引物,采用PCR方法克隆并测定了小麦赤霉病菌(Fusarium graminearum)对多菌灵(MBC)不同敏感性表型的8个中国菌株的a2-微管蛋白基因全序列。DNA序列比对结果表明中国的4个敏感菌株和4个抗药性菌株的a2-微管蛋白基因核苷酸序列同源性没有差异,多菌灵抗药性与a2-微管蛋白无关。该基因全长1712 bp,含有4 个内元,编码453 aa;与NRRL31 084的a2-微管蛋白基因核苷酸序列同源性为99%,存在5个差异核苷酸,与其所编码的氨基酸序列同源性为100%;与其他9种真菌a2-微管蛋白基因所编码的氨基酸序列同源性为64%~89%。【结论】小麦赤霉病菌对多菌灵的抗药性与a2-微管蛋白序列无关。  相似文献   

15.
【目的】根际铜绿假单胞菌M18能产生藤黄绿菌素(Plt)和吩嗪-1-羧酸(PCA)两种主要的抗生素。其PqsR/PQS群体感应系统由应答调控蛋白PqsR与信号分子PQS组成。前期研究已经表明pqsR负调控Plt生物合成及基因簇表达。本论文旨在研究PQS分子对Plt合成及基因表达的调控作用。【方法】从M18基因组中扩增PQS合成基因pqsA,通过同源重组技术构建假单胞菌M18的pqsA突变菌株M18pqsA。利用lacZ报告基因分析、信号分子添加实验等,研究PQS对Plt合成及基因表达的调控作用。【结果】在KMB培养基中,分别比较野生型菌株M18和突变菌株M18pqsA的Plt产量,突变菌株的Plt产量存在较小幅度的升高,约为野生型菌株的1.53倍。添加PQS对plt表达存在一定程度但不是很显著的负调控作用。【结论】PQS分子对Plt生物合成及基因表达存在部分负调控作用。  相似文献   

16.
季维克  赵智  张英姿  王宇  丁久元 《微生物学报》2010,50(11):1474-1480
【目的】转酮酶是非氧化磷酸戊糖途径中的关键酶。从北京棒杆菌(Corynebacterium pekinense PD-67)中克隆转酮酶(transketolase,EC2.2.1.1,TK)基因,并将转酮酶基因在C.pekinense PD-67中进行表达,研究增加转酮酶活性对C.pekinense PD-67生理特性的影响。【方法】分别以C.pekinense野生株AS1.299和突变株PD-67的基因组为模板,用PCR方法扩增tkt的全基因序列和前端控制序列;通过pAK6载体提高tkt基因在C.pekinense PD-67中的拷贝数,从而提高C.pekinense PD-67中转酮酶的活性。【结果】tkt基因核苷酸序列及其编码的氨基酸序列与结构分析结果表明,C.pekinense突变株PD-67与野生株AS1.299相比较,二者调控序列及结构基因核苷酸序列完全一致。与谷氨酸棒杆菌ATCC13032相比较,突变株PD-67的氨基酸序列有5个氨基酸差异,其中4个位于与辅因子硫胺素焦磷酸结合的结构域内。突变株PD-67来源的tkt基因在北京棒杆菌PD-67中得到了表达,重组菌转酮酶比活力比对照菌株提高了2倍。C.pekinense PD-67(pTK3)与对照菌株PD-67(pAK6)相比,生长加快,L-色氨酸的最终积累量也较高。【结论】本工作从C.pekinense1.299和PD-67中克隆到tkt基因,并实现tkt基因的同源表达。适当提高菌株转酮酶活力,有助于菌体生长和色氨酸积累。  相似文献   

17.
【目的】基于形态学鉴定和分子生物学技术确认甘薯凹胫跳甲Chaetocnema confinis是否入侵中国大陆,测定甘薯凹胫跳甲线粒体基因组序列,分析基因组结构及其系统发育关系。【方法】应用显微镜观察从广东不同地点采集的甘薯凹胫跳甲成虫的形态特征,并扩增cox1基因DNA序列进行分子鉴定;利用Illumina MiSeq测序平台对甘薯凹胫跳甲线粒体基因组进行测序、拼装、注释和特征分析;基于亲缘关系相近种属的线粒体基因组序列进行共线性分析和构建系统发育树,分析基因重排和系统发育关系。【结果】形态和分子鉴定结果表明大陆甘薯上发现的跳甲为甘薯凹胫跳甲。甘薯凹胫跳甲线粒体基因组序列大小为15 685 bp,包括有13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码控制区;这37个基因之间排列紧凑,间隔总长度101 bp,排列顺序与模式昆虫Drosophila yakuba线粒体基因排列顺序相同。甘薯凹胫跳甲线粒体基因组A+T含量为77.3%,具有明显的AT偏向性。13个蛋白质编码基因的起始密码子均为ATN。在22个tRNA基因中除trnS1的DHU臂缺失,trnD, trnG, trnN和trnT的二级结构中缺少TψC环外,其余17个都能形成典型的三叶草式二级结构,另trnK的反密码子突变为UUU,trnS1的反密码子突变为UCU。甘薯凹胫跳甲的控制区片段长度仅有60 bp,是目前已报道的昆虫线粒体基因组中最短的控制区。基于线粒体基因组的系统发育分析表明,甘薯凹胫跳甲与跳甲亚科(Alticinae)黄曲条跳甲Phyllotreta striolata亲缘关系最近。【结论】甘薯凹胫跳甲已经入侵到中国大陆。本研究获得了甘薯凹胫跳甲的线粒体基因组序列,为防控甘薯凹胫跳甲和分析叶甲科(Chrysomelidae)各种属间的系统发育关系奠定了基础。  相似文献   

18.
【目的】为挖掘优良促生菌(PGPR)菌株,分析和定位功能基因,发现其科学价值和工业化开发,为农业生产服务。【方法】以Bacillus mycoides Gnyt1菌株为材料,采用二代和三代测序技术相结合的研究体系,对菌株进行全基因组测序研究,分析菌株核基因组可能存在的功能基因和菌株分泌铁载体相关的基因。【结果】本研究基因组序列拼接后总长度为5597907 bp,GC百分含量为35.57%,该菌株中与铁载体分泌相关的基因共9条,其中2条基因主要存在于Porphyrin metabolism途径,与细胞内铁的运输代谢有关。【结论】通过全基因组测序,最终确定了与铁载体分泌相关的功能基因为GYT1和GYT2,为下一步基因功能验证奠定了基础。  相似文献   

19.
线粒体是能量转化与ATP形成的重要场所,已有多种食用真菌的线粒体基因组被相继组装注释,但肺形侧耳的线粒体基因组鲜有报道。本研究对野生肺形侧耳X2菌株的线粒体基因组进行组装并注释,由野生菌株X2与主栽菌株JX线粒体大片段差异序列,构建分子标记来鉴别野生和主栽肺形侧耳菌株。结果显示X2的线粒体基因组为大小75 709bp的闭合环状结构,含有rRNA的大小亚基基因,25个负责携带氨基酸的tRNA基因以及14个常见蛋白编码基因,在cox1基因上含有9个内含子。内含子主要为IB型,包含LAGLIDADG_1 superfamily、GIY-YIG_Cterm superfamily保守结构域。位于菌株X2与JX内含子和基因间区上的大片段差异序列,是造成种内线粒体多态性的主要因素。根据两菌株的差异片段构建系统进化树的结果显示,内含子、rnl-trnXtrnD-atp6序列能够将两株野生菌株和其他主栽菌株区分开,可用于野生肺形侧耳种内鉴定,而且trnD-atp6效果最佳。  相似文献   

20.
【背景】海洋环境中分离到的微泡菌属菌株具有多糖降解能力,在环境中可以作为糖类代谢的重要执行者参与海洋碳循环过程。【目的】测定2株微泡菌属菌株的多糖降解活性,通过与微泡菌属其他菌株基因组比较分析2株菌的多糖降解基因特征。【方法】通过3,5-dinitrosalicylicacid(DNS)定糖法测定多糖降解活性,同时利用高通量测序技术对菌株基因组序列进行测定与组装,并与其他基因组注释结果进行比较分析。【结果】分离得到2株微泡菌属菌株YPW1和YPW16,二者均为潜在新种。结果表明,菌株YPW1能够降解琼胶、褐藻胶、果胶、几丁质、木聚糖、淀粉、普鲁兰等7种多糖,而菌株YPW16仅可降解淀粉和普鲁兰。基因组分析表明,YPW1具有上述7种多糖的降解酶基因,但菌株YPW16只具有淀粉酶与普鲁兰酶降解基因。相较于其他微泡菌属菌株,菌株YPW1多糖降解范围、多糖降解酶基因种类与丰度较高,但菌株YPW16多糖降解范围却较为狭窄。由此可知,多糖降解酶基因在微泡菌属基因组中的分布差异性较大。【结论】本研究为微泡菌属提供了2株潜在的新型菌株资源,为生物多糖降解提供了生化工具,也为研究微泡菌属菌株中多糖降解基...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号