首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA) scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.  相似文献   

2.
随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。  相似文献   

3.
In this study, a highly porous three-dimensional (3D)-printed wound healing core/shell scaffold fabricated using poly-lactic acid (PLA). The core of scaffold was composed of hyaluronic acid (HA), copper carbon dots (Cu-CDs), rosmarinic acid, and chitosan hydrogel. Cu-CDs were synthesized using ammonium hydrogen citrate under hydrothermal conditions. Formulation containing 1 mg ml−1concentration of Cu-CDs showed an excellent antibacterial activity against gram bacteria. At 0.25 mg ml−1 of Cu-CDs concentration, scaffold had a good biocompatibility as confirmed by cytotoxicity assay on L929 fibroblast stem cells. in vivo wound healing experiments on groups of rats revealed that after 15 days of treatment, the optimal formulation of composite scaffold significantly improves the wound healing process compared to the PLA scaffold. This finding was confirmed by histological analysis and the relative expression of PDGF, TGF-β, and MMP-1 genes. The biocompatible antibacterial CU-CDS/PLA/HA/chitosan/rosmarinic acid nanocomposite is a promising wound healing scaffold which highly accelerates the process of skin regeneration.  相似文献   

4.
Yeo M  Lee H  Kim G 《Biomacromolecules》2011,12(2):502-510
β-Tricalcium phosphate (β-TCP) and collagen have been widely used to regenerate various hard tissues, but although Bioceramics and collagen have various biological advantages with respect to cellular activity, their usage has been limited due to β-TCP's inherent brittleness and low mechanical properties, along with the low shape-ability of the three-dimensional collagen. To overcome these material deficiencies, we fabricated a new hierarchical scaffold that consisted of a melt-plotted polycaprolactone (PCL)/β-TCP composite and embedded collagen nanofibers. The fabrication process was combined with general melt-plotting methods and electrospinning. To evaluate the capability of this hierarchical scaffold to act as a biomaterial for bone tissue regeneration, physical and biological assessments were performed. Scanning electron microscope (SEM) micrographs of the fabricated scaffolds indicated that the β-TCP particles were uniformly embedded in PCL struts and that electrospun collagen nanofibers (diameter = 160 nm) were well layered between the composite struts. By accommodating the β-TCP and collagen nanofibers, the hierarchical composite scaffolds showed dramatic water-absorption ability (100% increase), increased hydrophilic properties (20%), and good mechanical properties similar to PCL/β-TCP composite. MTT assay and SEM images of cell-seeded scaffolds showed that the initial attachment of osteoblast-like cells (MG63) in the hierarchical scaffold was 2.2 times higher than that on the PCL/β-TCP composite scaffold. Additionally, the proliferation rate of the cells was about two times higher than that of the composite scaffold after 7 days of cell culture. Based on these results, we conclude that the collagen nanofibers and β-TCP particles in the scaffold provide good synergistic effects for cell activity.  相似文献   

5.
Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.  相似文献   

6.
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.  相似文献   

7.
Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration.  相似文献   

8.
The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.  相似文献   

9.
Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly L: -lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.  相似文献   

10.
Polyhydroxyalkanoates (PHA) are hydrophobic biopolymers with huge potential for biomedical applications due to their biocompatibility, excellent mechanical properties and biodegradability. A porous composite scaffold made of medium‐chain‐length poly(3‐hydroxyalkanoates) (mcl‐PHA) and hydroxyapatite (HA) was fabricated using particulate leaching technique and NaCl as a porogen. Different percentages of HA loading was investigated that would support the growth of osteoblast cells. Ultrasonic irradiation was applied to facilitate the dispersion of HA particles into the mcl‐PHA matrix. The different P(3HO‐co‐3HHX)/HA composites were investigated using field emission scanning electron microscopy (FESEM), X‐ray diffraction (XRD) and energy dispersive X‐ray analysis (EDXA). The scaffolds were found to be highly porous with interconnecting pore structures and the HA particles were homogeneously dispersed in the polymer matrix. The scaffolds biocompatibility and osteoconductivity were also assessed following the proliferation and differentiation of osteoblast cells on the scaffolds. From the results, it is clear that scaffolds made from P(3HO‐co‐3HHX)/HA composites are viable candidate materials for bone tissue engineering applications.  相似文献   

11.
In the polarized kidney cell line MDCK, the influenza virus hemagglutinin (HA) has been well characterized as a model for apically sorted membrane glycoproteins. Previous work from our laboratory has shown that a single amino acid change in the cytoplasmic sequence of HA converts it from a protein that is excluded from coated pits to one that is efficiently internalized. Using trypsin or antibodies to mark protein on the surface, we have shown in MDCK cells that HA containing this mutation is no longer transported to the apical surface but instead is delivered directly to the basolateral plasma membrane. We propose that a cytoplasmic feature similar to an endocytosis signal can cause exclusive basolateral delivery.  相似文献   

12.
In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications.  相似文献   

13.
Telomerase is associated with cell proliferation capacity, protection and stabilization of chromosomes. TA (telomerase activity) can be detected in highly replicative cells, e.g. stem and cancer cells. Most available mESC (mouse embryonic stem cell) research is done with a few cell lines. The purpose of this study has been to evaluate the TA in different passages of newly isolated mESC. TRAP (Telomeric Repeat Amplification Protocol)-ELISA method was used in a semi-quantitative evaluation of TA. Three mESC lineages were investigated (CT2, CT3 and CT4) at three different passages (P13, P15 and P19). In contrast with previous studies, these mESC lines did not show the same TA throughout their passages, having initially low TA values, followed by a subsequent rise and stabilization.  相似文献   

14.
A chemical method for the determination of hyaluronan (hyaluronic acid, HA) has been developed and applied to the human blood plasma. Human blood plasma HA was converted to the ΔDi-HA by digestion with hyaluronidase SD and determined by a sensitive and selective high-performance liquid chromatography (HPLC). The HPLC includes the separation and detection of ΔDi-HA using a graphitized carbon column and fluorometric reaction with 2-cyanoacetamide in an alkaline eluent. The calibration graph for ΔDi-HA was linear over the range 0.2 ng-1 μg. It was revealed that the concentration of HA in normal human blood plasma is very low levels (about 24 ng/ml) in comparison to low-sulfated chondroitin 4-sulfate (about 13 μg/ml).  相似文献   

15.
Sarvestani AS  He X  Jabbari E 《Biopolymers》2007,85(4):370-378
Hydrogel/apatite nanocomposites are the ideal biomaterial to mimic the physio-chemical and biologic properties of the bone and to fabricate scaffolds for bone regeneration. The objective of this work was to investigate the effect of an osteonectin derived glutamic acid sequence on the viscoelastic properties of poly(lactide-ethylene oxide-fumarate) (PLEOF)/apatite composite, as a model degradable material in bone regeneration. Osteonectin is an extracellular acidic glycoprotein of the bone matrix, which is believed to be involved in linking the collagen network to hydroxyapatite (HA), the mineral phase of the bone. We synthesized a 6-glutamic acid sequence in solid phase with affinity to HA crystals via ionic interactions. One end of the synthesized peptide was functionalized with an acrylate group to covalently attach the peptide (Ac-Glu6) to the aqueous-based biodegradable and in situ crosslinkable PLEOF hydrogel matrix. To determine the effect of energetic interactions between the fillers and hydrogel matrix, HA nanoparticles were also treated with an acrylate functionalized 6-glycine amino acid peptide (Ac-Gly6) that interacts with the fillers only by van der Waals and polar interactions (without ionic interactions). Crosslinked PLEOF/apatite scaffolds were prepared using PLEOF as the degradable macromer, HA nanofillers treated with Ac-Glu6 peptide linker, and a neutral redox initiation system. The viscoelastic properties were studied by dynamic time sweep, strain sweep, and small amplitude oscillatory rheometry. Composites without surface treatment, treated with Ac-Gly6, and treated with Ac-Glu6 at different volume fractions and various particle sizes were examined. The results showed that the 6-mer glutamic acid sequence significantly affects the shear modulus of the scaffold because of ionic interactions between the peptide and HA crystals.  相似文献   

16.
王健  吴松  陈腾飞  朱东波  王靖  周天宝 《生物磁学》2011,(14):2615-2619
目的:通过建立兔股骨缺损的动物实验模型,对采用等温化学气相沉积法和等离子喷涂技术所制备的石墨化炭/炭复合材料+羟基磷灰石涂层(C/C+HA)复合骨植入材料进行骨植入实验的的生物相容性进行评价,探索该复合材料作为植入机体骨组织的可行性依据。方法:采用骨科钻在实验动物股骨髁上钻孔的方法建立骨缺损的动物实验模型,将待研究比较的实验材料分别植入实验动物的股骨髁内,持续观察8周,在术后第2、4、8周时应用X线照片、组织学染色和扫描电镜技术,分别观察所研究材料在机体内对骨缺损愈合及其对机体的影响,进行组间比较和相关性分析。结果:石墨化炭/炭复合材料+羟基磷灰石涂层(C/C+HA)复合骨植入材料的骨植入实验生物相容性良好,材料与骨组织结合牢固,界面中成骨细胞生长明显,且炭颗粒脱落现象少,未见炎症细胞浸润。植入动物体内的材料在植入期未引起机体局部的炎症浸润反应且表面脱落的碳颗粒在机体组织中也未引起局部严重的炎症反应。在实验动物植入材料后的连续8周观察期中,组织学观察显示:表面涂有HA的炭/炭复合材料对骨组织形态改建上表现良好,其与骨组织接界处所形成的纤维结缔组织膜层厚度明显比未涂HA的材料要小,与骨组织结合更为紧密和牢固;碳颗粒出现脱落游离的现象明显减少。结论:在炭/炭复合材料表面涂以HA生物涂层对骨的形态改建和促进骨小梁生长等方面具有良好的作用,是一种具有发展潜力的骨修复材料。  相似文献   

17.
Hyaluronan (HA) is a nonsulfated glycosaminoglycan that has long been known to play structural roles in vertebrates. Recently, it has become increasingly obvious that this linear polysaccharide has many more uses than simply scaffolding or space filler. HA has been found to be involved in development, cell signaling, cell motility, and metastasis. These roles are often dictated by the length of the HA polymer, which can vary from a few to about 10,000 sugar residues in length. Three distinct isoforms of HA synthase exist in mammals. It has been shown previously by others that each isoform produces HA that differs in size distribution, but the regulatory mechanism is not yet known. Mutations have been described that alter the size distribution of the HA produced by the streptococcal HA synthases. We show that by mutating one particular amino acid residue of a vertebrate HA synthase, depending on the introduced side chain, the size of HA produced can be either reduced or increased. We postulate that several cysteine residues and a serine residue may be involved in binding directly or indirectly to the nascent HA chain. These data support the theory that the relative strength of the interaction between the catalyst and the polymer may be a major factor in HA size control.  相似文献   

18.
There is substantial biochemical, pathological, and genetic evidence that α-synuclein (A-syn) is a principal molecule in the pathogenesis of Parkinson disease (PD). We previously reported that total A-syn levels in cerebrospinal fluid (CSF), measured with the specific enzyme-linked immunosorbent assay (ELISA) developed by ourselves, were decreased in patients with PD, and suggested the usefulness of A-syn in CSF and plasma as a biomarker for the diagnosis of PD. After our report, a considerable number of studies have investigated the levels A-syn in CSF and in blood, but have reported inconclusive results. Such discrepancies have often been attributed not only to the use of different antibodies in the ELISAs but also to interference from hemolysis. In this study we measured the levels of A-syn in CSF and plasma by using our own sandwich ELISA with or without heterophilic antibody (HA) inhibitor in 30 patients with PD and 58 age-matched controls. We thereby revealed that HA interfered with ELISA measurements of A-syn and are accordingly considered to be an important confounder in A-syn ELISAs. HA produced falsely exaggerated signals in A-syn ELISAs more prominently in plasma samples than in CSF samples. After elimination of HA interference, it was found that hemolysis did not have a significant effect on the signals obtained using our A-syn ELISA. Furthermore, plasma levels of A-syn were significantly lower in the PD group compared with the control group following elimination of HA interference with an HA inhibitor. Our results demonstrate that HA was a major confounder that should be controlled in A-syn ELISAs, and that plasma A-syn could be a useful biomarker for the diagnosis of PD if adequately quantified following elimination of HA interference.  相似文献   

19.
It has recently been suggested that the infarcted rat heart microenvironment could direct pluripotent mouse embryonic stem cells to differentiate into cardiomyocytes through an in situ paracrine action. To investigate whether the heart can function as a cardiogenic niche and confer an immune privilege to embryonic stem cells, we assessed the cardiac differentiation potential of undifferentiated mouse embryonic stem cells (mESC) injected into normal, acutely or chronically infarcted rat hearts. We found that mESC survival depended on immunosuppression both in normal and infarcted hearts. However, upon Cyclosporin A treatment, both normal and infarcted rat hearts failed to induce selective cardiac differentiation of implanted mESC. Instead, teratomas developed in normal and infarcted rat hearts 1 week and 4 weeks (50% and 100%, respectively) after cell injection. Tight control of ESC commitment into a specific cardiac lineage is mandatory to avoid the risk of uncontrolled growth and tumourigenesis following transplantation of highly plastic cells into a diseased myocardium.  相似文献   

20.
In near weak acid to neutral medium, ethyl violet (EV) can react rapidly with hyaluronic acid (HA) to form a complex, which results in a significant enhancement of resonance Rayleigh scattering (RRS) and an appearance of a new spectrum, and the scattering wavelengths appear at 231, 274, 326, 498 and 640 nm. The maximum scattering wavelength appears at 326 nm. The RRS intensity is directly proportional to the concentration of HA in the range of 0.4-48.0 microg mL(-1). A new method for the determination of trace amounts of HA based on the RRS method has been developed. The method exhibits high sensitivity, and the detection limit for HA is 9.6 x 10(-2) microg mL(-1). This method was applied for determining HA in eyedrops and in sodium hyaluronate injection samples with satisfactory results. Furthermore, the enhancement reasons of RRS and the relationship between RRS spectral characteristics of the HA-EV complex and its absorption spectrum have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号