首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PsbS subunit of Photosystem II (PSII) has received much attention in the past few years, given its crucial role in photoprotection of higher plants. The exact location of this small subunit in thylakoids is also debated. In this work possible interaction partners of PsbS have been identified by immunoaffinity and immunoprecipitation, performed with mildly solubilized whole thylakoid membrane. The interacting proteins, as identified by mass spectrometry analysis of the immunoaffinity eluate, include CP29, some LHCII components, but also components of Photosystem I, of the cytochrome b6f complex as well as of ATP synthase. These proteins can be co-immunoprecipitated by using highly specific anti-PsbS antibodies and, vice-versa, PsbS is co-immunoprecipitated by antisera against components of the interacting complexes. We also find that PsbS co-migrates with bands containing PSII, ATP synthase and cytochrome b6f as well as with LHCII-containing bands on non-denaturing Deriphat PAGE. These results suggest multiple location of PsbS in the thylakoid membrane and point to an unexpected lateral mobility of this PSII subunit. As revealed by immunogold labelling with antibody against PsbS, the protein is associated either with granal membranes or prevalently with stroma lamellae in low or high-intensity light-treated intact leaves, respectively. This finding is consistent with the capability of PsbS to interact with complexes located in stroma lamellae, even though the exact physiological condition(s) under which these interactions may take place remain to be clarified.  相似文献   

2.
Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.Abbreviations PS I and PS II Photosystem I and II - P 700 reaction center of PS I - LHC II light-harvesting complex II  相似文献   

3.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

4.
Photosystem II (PSII) is a huge multi-protein-complex consisting, in higher plants and green algae, of the PS II core and the adjacent light harvesting proteins. In the study reported here, N-terminal His-tags were added to the plastome-encoded alpha-subunit of cytochrome b559, PsbE, in tobacco plants, thus facilitating rapid, mild purification of higher plant PSII. Biolistic chloroplast transformation was used to replace the wildtype psbE gene by His-tagged counterparts. Transgenic plants did not exhibit an obvious phenotype. However, the oxygen evolution capacity of thylakoids prepared from the mutants compared to the wildtype was reduced by 10-30% depending on the length of the His-tag, although Fv/Fm values differed only slightly. Homoplasmic F1 plants were used to isolate PSII cores complexes. The cores contained no detectable traces of LHC or PsaA/B polypeptides, but the main core subunits of PSII could be identified using immunodetection and mass spectroscopy. In addition, Psb27 and PsbS were detected. The presence of the former was presumably due to the preparation method, since PSII complexes located in the stroma are also isolated. In contrast to previous reports, PsbS was solely found as a monomer on SDS-PAGE in the PSII core complexes of tobacco.  相似文献   

5.
A mild sonication and phase fractionation method has been used to isolate five regions of the thylakoid membrane in order to characterize the functional lateral heterogeneity of photosynthetic reaction centers and light harvesting complexes. Low-temperature fluorescence and absorbance spectra, absorbance cross-section measurements, and picosecond time-resolved fluorescence decay kinetics were used to determine the relative amounts of photosystem II (PSII) and photosystem I (PSI), to determine the relative PSII antenna size, and to characterize the excited-state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), margins (MA), stroma lamellae (T3), and purified stromal fraction (Y100). PSII antenna size was drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by three exponential decay components in the grana fractions, and were found to have only two decay components with slower lifetimes in the stroma. Results are discussed in the framework of existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in the stroma and grana margin fractions possess much slower primary charge separation rates and decreased photosynthetic efficiency when compared to PSII populations in the grana stack.  相似文献   

6.
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.  相似文献   

7.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

8.
The PsbS subunit of photosystem II (PSII) plays a key role in nonphotochemical quenching (NPQ), the major photoprotective regulatory mechanism in higher plant thylakoid membranes, but its mechanism of action is unknown. Here we describe direct evidence that PsbS controls the organization of PSII and its light harvesting system (LHCII). The changes in chlorophyll fluorescence amplitude associated with the Mg(2+)-dependent restacking of thylakoid membranes were measured in thylakoids prepared from wild-type plants, a PsbS-deficient mutant and a PsbS overexpresser. The Mg(2+) requirement and sigmoidicity of the titration curves for the fluorescence rise were negatively correlated with the level of PsbS. Using a range of PsbS mutants, this effect of PsbS was shown not to depend upon its efficacy in controlling NPQ, but to be related only to protein concentration. Electron microscopy and fluorescence spectroscopy showed that this effect was because of enhancement of the Mg(2+)-dependent re-association of PSII and LHCII by PsbS, rather than an effect on stacking per se. In the presence of PsbS the LHCII.PSII complex was also more readily removed from thylakoid membranes by detergent, and the level of PsbS protein correlated with the amplitude of the psi-type CD signal originating from features of LHCII.PSII organization. It is proposed that PsbS regulates the interaction between LHCII and PSII in the grana membranes, explaining how it acts as a pH-dependent trigger of the conformational changes within the PSII light harvesting system that result in NPQ.  相似文献   

9.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

10.
Photosystem (PSII) is a supramolecular polypeptide complex found in oxygenic photosynthetic membranes, which is capable of extracting electrons from water for the reduction of plastoquinone. An intriguing feature of this assembly is the fact that it includes more than a dozen low-mass polypeptides of generally unknown function. Using a transplastomic approach, we have individually disrupted the genes of the psbEFLJoperon in Nicotiana tabacum, which encode four such polypeptides, without impairing expression of downstream loci of the operon. All four mutants exhibited distinct phenotypes; none of them was capable of photoautotrophic growth. All mutants bleached rapidly in the light. Disruption of psbEand psbF, which code for the alpha and beta apoproteins of cytochrome b(559), abolished PSII activity, as expected; Delta psbL and Delta psbJ plants displayed residual PSII activity in young leaves. Controlled partial solubilisation of thylakoid membranes uncovered surprisingly severe impairment of PSII structure, with subunit and assembly patterns varying depending on the mutant considered. In the Delta psbL mutant PSII was assembled primarily in a monomeric form, the homodimeric form was preponderant in Delta psbJ, and, unlike the case in Delta psbZ, the thylakoids of both mutants released some PSII supercomplexes. On the other hand, Photosystem I (PSI), the cytochrome b(6)f complex, ATP synthase, LHCII, and CP24/CP26/CP29 antennae were present in near wild-type levels. The data are discussed in terms of their implications for structural, biogenetic and functional aspects of PSII.  相似文献   

11.
Photosystem I (PSI) and photosystem II (PSII) complexes have been isolated from stacked spinach thylakoid membranes that had been treated with varying amounts of glutaraldehyde. The concentrations of cytochrome f, Q, and P700 have been determined by spectrophotometric methods. It was found that at low concentrations of glutaraldehyde, the amount of cytochrome f associated with either PSII or PSI increased significantly while the amounts of Q and P700 stayed relatively constant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting analyses indicated the presence of cytochrome f and other components of the cytochrome b6-f complex in the PSII and PSI preparations after glutaraldehyde treatment, but no intermolecular cross-linked polypeptides could be detected. Solubilization of the cytochrome b6-f complex was also inhibited after thylakoid membranes were treated with low concentrations of glutaraldehyde. These results are discussed in relation to current models for the organization of the membrane complexes, and relate to the location of the cytochrome b6-f complex in appressed and nonappressed membrane regions of thylakoids.  相似文献   

12.
The 'stay-green' mutation cytG in soybean ( Glycine max ) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b 6/ f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG .  相似文献   

13.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

14.
Progressive solubilization of spinach chloroplast thylakoids by Triton X-100 was employed to investigate the domain organization of the electron transport complexes in the thylakoid membrane. Triton/chlorophyll ratios of 1:1 were sufficient to disrupt fully the continuity of the thylakoid membrane network, but not sufficient to solubilize either photosystem I (PSI), photosystem II (PSII) or the cytochrome b6-f(Cyt b6-f) complex. Progressive with the Triton concentration increase (Triton/Chl greater than 1:1), a differential solubilization of the three electron transport complexes was observed. Solubilization of the Cyt b6-f complex from the thylakoid membrane preceded that of PSI and apparently occurred early in the solubilization of stroma-exposed segments of the chloroplast lamellae. The initial removal of chlorophyll (up to 40% of the total) occurred upon solubilization of PSI from the stroma-exposed lamella regions in which PSI is localized. The tightly appressed membrane of the grana partition regions was markedly resistant to solubilization by Triton X-100. Thus, solubilization of PSII from this membrane region was initiated only after all Cyt b6-f and PSI complexes were removed from the chloroplast lamellae. The results support the notion of extreme lateral heterogeneity in the organization of the electron transport complexes in higher plant chloroplasts and suggest a Cyt b6-f localization in the membrane of the narrow fret regions which serve as a continuum between the grana and stroma lamellae.  相似文献   

15.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

16.
Desiccation has significant effects on photosynthetic processes in intertidal macro‐algae. We studied an intertidal macro‐alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four‐helix protein in the LHC superfamily), and light‐harvesting complex stress‐related (LHCSR) proteins, which are required for non‐photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native‐polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro‐alga Ulva sp.  相似文献   

17.
Photosystem I polypeptides   总被引:1,自引:0,他引:1  
Photosystem I mediates light-induced electron transport from reduced plastocyanin in the thylakoid lumen to oxidized ferredoxin in the stroma. Photosystem I is located in the stroma lamellae of the thylakoid system and consists of a peripheral light-harvesting pigment-protein complex and a core complex carrying the electron transfer components and additional antenna pigments. The core complex consists of 11 different polypeptide subunits, five of which are chloroplast encoded and six of which are encoded by nuclear genes. The structure and function of the different subunits of the photosystem 1 core complex is discussed.  相似文献   

18.
《BBA》2023,1864(2):148945
Knowledge about the exact abundance and ratio of photosynthetic protein complexes in thylakoid membranes is central to understanding structure-function relationships in energy conversion. Recent modeling approaches for studying light harvesting and electron transport reactions rely on quantitative information on the constituent complexes in thylakoid membranes. Over the last decades several quantitative methods have been established and refined, enabling precise stoichiometric information on the five main energy-converting building blocks in the thylakoid membrane: Light-harvesting complex II (LHCII), Photosystem II (PSII), Photosystem I (PSI), cytochrome b6f complex (cyt b6f complex), and ATPase. This paper summarizes a few quantitative spectroscopic and biochemical methods that are currently available for quantification of plant thylakoid protein complexes. Two new methods are presented for quantification of LHCII and the cyt b6f complex, which agree well with established methods. In addition, recent improvements in mass spectrometry (MS) allow deeper compositional information on thylakoid membranes. The comparison between mass spectrometric and more classical protein quantification methods shows similar quantities of complexes, confirming the potential of thylakoid protein complex quantification by MS. The quantitative information on PSII, PSI, and LHCII reveal that about one third of LHCII must be associated with PSI for a balanced light energy absorption by the two photosystems.  相似文献   

19.
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6f complex, and ATPase while depleted in photosystems and light‐harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.  相似文献   

20.
We used differential scanning calorimetry (DSC) as a technique capable of identifying photosynthetic complexes on the basis of their calorimetric transitions. Annotation of thermal transitions was carried out with thylakoid membranes isolated from various photosynthetic mutants of Synechocystis sp. PCC6803. The thylakoid membranes exhibited seven major DSC bands between 40 and 85°C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherms and by a subsequent annealing procedure. The successive annealing procedure proved to be more reliable technique than mathematical deconvolution in assigning thermal transitions. The main DSC band, around 47°C, resulting from the high enthalpy change that corresponds to non-interacting complex of PSII, was assigned using the PSI-less/apcE(-) mutant cells. Another band around 68-70°C relates to the denaturation of PSII surrounded by other proteins of the photosynthetic complexes in wild type and PSI-less/apcE(-) cells. A further major transition found at 82-84°C corresponds to the PSI core complex of wild type and PSII-deficient BE cells. Other transition bands between 50-67 and 65-75°C are believed to relate to ATP synthase and cytochrome b(6)f, respectively. These thermal transitions were obtained with thylakoids isolated from PSI(-)/PSII(-) mutant cells. Some minor bands determined at 59 and 83-84°C correspond to an unknown complex and NADH dehydrogenase, respectively. These annotations were done by PSI-less/apcE(-) and PSI(-)/PSII(-) mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号