首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.  相似文献   

3.
1 Introduction Based on the review of the previous work on genecircuits [1–7] , this paper discusses an electronic circuitwhich has been designed to mimic glycolysis, the CitricAcid (TCA) cycle and the electron transport chain. En-zymes play a vital role in metabolic pathways. Thespecificity of enzymic action is explained in terms of theprecise fitting of enzyme and substrate [8–9] . Enzymes areusually very specific…  相似文献   

4.
5.
The light-induced singlet oxygen production and antifungal activity of phenylphenalenone phytoalexins isolated from infected banana plants (Musa acuminata) are reported. Upon absorption of light energy all studied phenylphenalenones sensitise the production of singlet oxygen in polar and non-polar media. Antifungal activity of these compounds towards Fusarium oxysporum is enhanced in the presence of light. These results, together with the correlation of IC50 values under illumination with the quantum yield of singlet oxygen production and the enhancing effect of D2O on the antifungal activity, suggest the intermediacy of singlet oxygen produced by electronic excitation of the phenylphenalenone phytoalexins.  相似文献   

6.
7.
8.
9.
A novel three-dimensional model of tertiary interactions in the core region of the eukaryotic selenocysteine tRNA is proposed based on the analysis of available nucleotide sequences. The model features the 7/5 tRNA(Sec) secondary structure characterized by seven and five base pairs in the acceptor and T-stems, respectively, and four nucleotides in the connector region between the acceptor and D-stems. The model suggests a unique system of tertiary interactions in the area between the major groove of the D-stem and the first base pair of the extra arm that provides a rigid orientation of the extra arm and contributes to the overall stability of the molecule. The model is consistent with available experimental data on serylation, selenylation, and phosphorylation of different tRNA(Sec) mutants. The important similarity between the proposed model and the structure of the tRNA(Ser) is shown. Based on this similarity, the ability of some tRNA(Ser) mutants to be serylated, selenylated, and phosphorylated was evaluated and found to be in a good agreement with experimental data.  相似文献   

10.
In this review, we summarize the current state of understanding of the processes by which leukocytes, and other cells, such as tumor cells interact with the endothelium under various blood flow conditions. It is shown that the interactions are influenced by cell-cell adhesion properties, shear stresses due to the flow field and can also be modified by the cells microrheological properties. Different adhesion proteins are known to be involved leading to particular mechanisms by which interactions take place during inflammation or metastasis. Cell rolling, spreading, migration are discussed, as well as the effect of flow conditions on these mechanisms, including microfluidic effects. Several mathematical models proposed in recent years capturing the essential features of such interaction mechanisms are reviewed. Finally, we present a recent model in which the adhesion is given by a kinetics theory based model and the cell itself is modeled as a viscoelastic drop. Qualitative agreement is found between the predictions of this model and in vitro experiments.  相似文献   

11.
12.
Type 1 fimbriae are a known virulence factor in a number of pathogenic enterobacteriaceae, including Salmonella, Shigella and E. coli. Yet, they are also expressed by some commensal strains, notably of E. coli. One hypothesis of the role of fimbriae in commensals is that they evoke a small but tolerable host immune response in order to have the host release sialic acid, which is a valuable nutrient. Genetic evidence suggests that sialic acid down-regulates fimbriation. This has been believed to enable the cells to reduce virulence when the host response is increasing, thus avoiding a full activation of host defenses. In this article we assess the plausibility of this hypothesis using mathematical models. Our models lead us to two main conclusions: A slight activation of host defenses is only possible with a carefully tuned set of parameters, whereas under a wide range of parameters and assumptions, the model predicts the host defenses to be activated to at least half their potential in response to fimbriation. Secondly, the fact that fimbriation is suppressed by sialic acid seems irrelevant for the global qualitative properties.  相似文献   

13.
14.
15.
16.
17.
维甲酸诱导基因-I(retinoic acid-inducible gene-I,RIG-I)已经被鉴定为RNA病毒感染的细胞传感元件,它与线粒体衔接蛋白MAVS/IPS-1/VISA/Cardif相互作用,诱导I型干扰素(interferon,IFN)介导的宿主抗病毒感染天然免疫.然而,许多病毒已经进化出了种种策略破坏RIG-I介导的信号通路.宿主-病毒的这种相互作用为揭示病毒感染的致病机理和发现开发抗病毒药物的靶标提供了机遇.本文主要综述RIG-I信号通路及不同病毒用来逃避RIG-I信号的策略.  相似文献   

18.
Kim JR  Cho KH 《The FEBS journal》2012,279(18):3329-3337
Hysteresis can be found in many physical systems, and a hysteretic switch has been used for various mechanical and electrical systems. Such a hysteretic switch can be created by using a single positive feedback loop, as often used in engineering systems. It is, however, intriguing that various cellular signaling systems use coupled positive feedback loops to implement the hysteretic switch. A question then arises about the advantage of using coupled positive feedback loops instead of simple isolated positive feedback for an apparently equivalent hysteretic switch. Through mathematical simulations, we determined that cellular systems with coupled positive feedback loops show enhanced hysteretic switching, and can thereby make a more reliable decision under conditions of noisy signaling. As most intracellular processes are accompanied by intrinsic noise, important cellular decisions such as differentiation and apoptosis need to be highly robust to such noises. The coupled positive feedback loops might have been evolutionarily acquired to enable correct cell fate decisions to be made through enhanced hysteretic switching in noisy cellular environments.  相似文献   

19.
Bidirectional interdependence between the immune system and the CNS involves the intervention of common cofactors. Cytokines are endogenous to the brain, endocrine and immune systems. These shared ligands are used as a chemical language for communication. Such interaction suggests an immunoregulatory role for the brain, and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is associated with effects of stress on immunity. Cytokines are thus capable of modulating responses in the CNS, while neuropeptides can exert their effects over cellular groups in the immune system. One way is controlled by the HPA axis, a coordinator of neuroimmune interactions that is essential to unravel in order to elucidate vital communications in a manner that this crosstalk remains a cornerstone in perpetuating a stance of homeostasis.  相似文献   

20.
When looking around without fixating the eyes on any particular objects, the image changes at a high frequency without any noticeable intervals between the images. This requires a high speed generation of retina signals and high speed transmission of the signals to the vision center. As an example of high speed neural interaction, each light stimulus generates two different bipolar cells response, transmitting different pieces of information to the vision center. This doubles the speed of information transmission to the vision center. The functional significance of Kuffler's "inhibitory surround" was revealed to maintain the brightness of the perceived images within a limited range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号