首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
The carbamoyl phosphate synthetase domain of the multifunctional protein CAD catalyzes the initial, rate-limiting step in mammalian de novo pyrimidine biosynthesis. In addition to allosteric regulation by the inhibitor UTP and the activator PRPP, the carbamoyl phosphate synthetase activity is controlled by mitogen-activated protein kinase (MAPK)- and protein kinase A (PKA)-mediated phosphorylation. MAPK phosphorylation, both in vivo and in vitro, increases sensitivity to PRPP and decreases sensitivity to the inhibitor UTP, whereas PKA phosphorylation reduces the response to both allosteric effectors. To elucidate the factors responsible for growth state-dependent regulation of pyrimidine biosynthesis, the activity of the de novo pyrimidine pathway, the MAPK and PKA activities, the phosphorylation state, and the allosteric regulation of CAD were measured as a function of growth state. As cells entered the exponential growth phase, there was an 8-fold increase in pyrimidine biosynthesis that was accompanied by a 40-fold increase in MAPK activity and a 4-fold increase in CAD threonine phosphorylation. PRPP activation increased to 21-fold, and UTP became a modest activator. These changes were reversed when the cultures approach confluence and growth ceases. Moreover, CAD phosphoserine, a measure of PKA phosphorylation, increased 2-fold in confluent cells. These results are consistent with the activation of CAD by MAPK during periods of rapid growth and its down-regulation in confluent cells associated with decreased MAPK phosphorylation and a concomitant increase in PKA phosphorylation. A scheme is proposed that could account for growth-dependent regulation of pyrimidine biosynthesis based on the sequential action of MAPK and PKA on the carbamoyl phosphate synthetase activity of CAD.  相似文献   

2.
Reinach PS  Li T  Lu L 《Cell proliferation》2000,33(4):189-202
The association between the phosphorylation status of the retinoblastoma protein, pRb and changes in cell cycle control caused by either protein kinase C (PKC) or protein kinase A (PKA) stimulation was evaluated in human myeloblastic leukaemia ML-1 cells. TPA-induced PKC activation resulted in dephosphorylation of pRb and subsequently induced ML-1 differentiation based on morphological changes and CD14 expression. In the present study, we showed that inhibition of protein phosphatases (PP-1 and PP-2a) prevented the TPA-induced differentiation in ML-1 cells. Preinhibition of PP-1 and PP-2a activities with 1–100 nM okadaic acid dose-dependently blunted the decrease in the phosphorylation status of pRb obtained with TPA and overrode cell cycle arrest. PKA stimulation with 8-chlorophenylthio-cAMP (100 µM) decreased cell proliferation by 65% and the distribution of cells in the G1 phase significantly increased from 38% to 83% concomitant with a 34% decline in the number of cells present in the S phase. In addition, PKA stimulation significantly decreased the pRb phosphorylation status but did not elicit CD14 expression, indicating that cAMP-induced dephosphorylation of pRb cannot by itself trigger differentiation in ML-1 cells.  相似文献   

3.
E A Carrey  D G Campbell    D G Hardie 《The EMBO journal》1985,4(13B):3735-3742
The trifunctional protein CAD, which contains the first three enzyme activities of pyrimidine nucleotide biosynthesis (carbamyl phosphate synthetase II, aspartate transcarbamylase and dihydro-orotase), is phosphorylated stoichiometrically by cyclic AMP-dependent protein kinase. Phosphorylation activates the ammonia-dependent carbamyl phosphate synthetase activity of the complex by reducing the apparent Km for ATP. This effect is particularly marked in the presence of the allosteric feedback inhibitor, UTP, when the apparent Km is reduced by greater than 4-fold. Inhibition by physiological concentrations of UTP is substantially relieved by phosphorylation. Cyclic AMP-dependent protein kinase phosphorylates two serine residues on the protein termed sites 1 and 2, and the primary structures of tryptic peptides containing these sites have been determined: Site 1: Arg-Leu-Ser(P)-Ser-Phe-Val-Thr-Lys Site 2: Ile-His-Arg-Ala-Ser(P)-Asp-Pro-Gly-Leu-Pro-Ala-Glu-Glu-Pro-Lys During the phosphorylation reaction, activation of the carbamyl phosphate synthetase shows a better correlation with occupancy of site 1 rather than site 2. Both phosphorylation and activation can be reversed using purified preparations of the catalytic subunits of protein phosphatases 1- and -2A, and inactivation also correlates better with dephosphorylation of site 1 rather than site 2. We believe this to be the first report that a key enzyme in nucleotide biosynthesis is regulated in a significant manner by reversible covalent modification. The physiological role of this phosphorylation in the stimulation of cell proliferation by growth factors and other mitogens is discussed.  相似文献   

4.
蛋白激酶A抑制剂对HeLa细胞S期进程的影响   总被引:1,自引:0,他引:1  
以同步化的HeLa细胞为实验材料, 研究了蛋白激酶A(PKA)抑制剂对HeLa细胞S期进程的影响及其作用的分子机理.通过TdR双阻断法, 获得了同步化的S期细胞, 3H-TdR掺入实验表明PKA抑制剂typeⅢ(80 mg/L)明显提高了S期3H-TdR的掺入水平, 提示了PKA在S期进程中起阻抑作用.进一步实验表明,在PKA抑制剂typeⅢ作用下胸苷激酶(TK)活性和PCNA蛋白水平均有所提高,同时明显促进了CyclinA蛋白的表达, 并抑制了周期负调因子p21蛋白的水平,但对CDK2表达几乎无影响.结果表明, PKA可通过作用于PCNA和引擎分子CyclinA的水平和通过影响p21的表达负调于S期进程. 这可能是PKA负调HeLa细胞S期进程的分子机理之一.  相似文献   

5.
Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis.  相似文献   

6.
CAD, a large multifunctional protein that carries carbamoyl phosphate synthetase (CPSase), aspartate transcarbamoylase, and dihydroorotase activities, catalyzes the first three steps of de novo pyrimidine biosynthesis in mammalian cells. The CPSase component, which catalyzes the initial, rate-limiting step, exhibits complex regulatory mechanisms involving allosteric effectors and phosphorylation that control the flux of metabolites through the pathway. Incubation of CAD with ATP in the absence of exogenous kinases resulted in the incorporation of 1 mol of P(i)/mol of CAD monomer. Mass spectrometry analysis of tryptic digests showed that Thr(1037) located within the CAD CPS.B subdomain was specifically modified. The reaction is specific for MgATP, ADP was a competitive inhibitor, and the native tertiary structure of the protein was required. Phosphorylation occurred after denaturation, further purification of CAD by SDS gel electrophoresis, and renaturation on a nitrocellulose membrane, strongly suggesting that phosphate incorporation resulted from an intrinsic kinase activity and was not the result of contaminating kinases. Chemical modification with the ATP analog, 5'-p-fluorosulfonylbenzoyladenosine, showed that one or both of the active sites that catalyze the ATP-dependent partial reactions are also involved in autophosphorylation. The rate of phosphorylation was dependent on the concentration of CAD, indicating that the reaction was, at least in part, intermolecular. Autophosphorylation resulted in a 2-fold increase in CPSase activity, an increased sensitivity to the feedback inhibitor UTP, and decreased allosteric activation by 5-phosphoribosyl-1-pyrophosphate, functional changes that were distinctly different from those resulting from phosphorylation by either the protein kinase A or mitogen-activated protein kinase cascades.  相似文献   

7.
Phosphatidylinositol 4-phosphate 5-kinase (PIPK) catalyzes a final step in the synthesis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), a lipid signaling molecule. Strict regulation of PIPK activity is thought to be essential in intact cells. Here we show that type I enzymes of PIPK (PIPKI) are phosphorylated by cyclic AMP-dependent protein kinase (PKA), and phosphorylation of PIPKI suppresses its activity. Serine 214 was found to be a major phosphorylation site of PIPK type Ialpha (PIPKIalpha) that is catalyzed by PKA. In contrast, lysophosphatidic acid-induced protein kinase C activation increased PIPKIalpha activity. Activation of PIPKIalpha was induced by dephosphorylation, which was catalyzed by an okadaic acid-sensitive phosphatase, protein phosphatase 1 (PP1). In vitro dephosphorylation of PIPKIalpha with PP1 increased PIPK activity, indicating that PP1 plays a role in lysophosphatidic acid-induced dephosphorylation of PIPKIalpha. These results strongly suggest that activity of PIPKIalpha in NIH 3T3 cells is regulated by the reversible balance between PKA-dependent phosphorylation and PP1-dependent dephosphorylation.  相似文献   

8.
Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser(231) residue, located within the KIM. Upon phosphorylation of Ser(231), PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal-regulated kinase (ERK)1/2 and p38alpha were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Calpha catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38alpha by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases.  相似文献   

9.
The catalytic subunit of cAMP-dependent protein kinase (PKA) is phosphorylated at threonine 197 and serine 338. Phosphorylation of threonine 197, located in the activation loop, is required for coordinating the active site conformation and optimal enzymatic activity. However, this phosphorylation has not been widely appreciated as a regulatory site because of the apparent constitutive nature of the phosphorylation and the general resistance of the kinase to phosphatase treatment. We demonstrate here that the observed resistance of the catalytic subunit to dephosphorylation is due, in part, to the presence of the highly nucleophilic cysteine 199 located proximal to the phosphate on threonine 197. Experiments performed in vitro demonstrated that mutation (cysteine 199 to alanine), oxidation, such as by glutathionylation or internal disulfide bond formation, or alkylation of the C-subunit enhanced its ability to be dephosphorylated. Furthermore, rephosphorylation of reduced C-subunit by PDK1 created a cycle whereby the inactive kinase could be reactivated. To demonstrate that thiol modification of PKA can lead to enhanced dephosphorylation in vivo, PC12 cells were treated with N-ethylmaleimide (NEM). Such treatment resulted in complete PKA inactivation and dephosphorylation of threonine 197. This effect of NEM was contingent upon prior treatment of the cells with PKA activators, demonstrating the resistance of the holoenzyme to thiol alkylation-mediated dephosphorylation. Our results also demonstrated that NEM treatment of PC12 cells enhanced the dephosphorylation of the protein kinase Calpha activation loop, suggesting a common mechanism of regulation among members of the AGC family of kinases.  相似文献   

10.
CAD is a multifunctional protein that initiates and regulates mammalian de novo pyrimidine biosynthesis. The activation of the pathway required for cell proliferation is a consequence of the phosphorylation of CAD Thr-456 by mitogen-activated protein (MAP) kinase. Although most of the CAD in the cell was cytosolic, cell fractionation and fluorescence microscopy showed that Thr(P)-456 CAD was primarily localized within the nucleus in association with insoluble nuclear substructures, including the nuclear matrix. CAD in resting cells was cytosolic and unphosphorylated. Upon epidermal growth factor stimulation, CAD moved to the nucleus, and Thr-456 was found to be phosphorylated. Mutation of the CAD Thr-456 and inhibitor studies showed that nuclear import is not mediated by MAP kinase phosphorylation. Two fluorescent CAD constructs, NLS-CAD and NES-CAD, were prepared that incorporated strong nuclear import and export signals, respectively. NLS-CAD was exclusively nuclear and extensively phosphorylated. In contrast, NES-CAD was confined to the cytoplasm, and Thr-456 remained unphosphorylated. Although alternative explanations can be envisioned, it is likely that phosphorylation occurs within the nucleus where much of the activated MAP kinase is localized. Trapping CAD in the nucleus had a minimal effect on pyrimidine metabolism. In contrast, when CAD was excluded from the nucleus, the rate of pyrimidine biosynthesis, the nucleotide pools, and the growth rate were reduced by 21, 36, and 60%, respectively. Thus, the nuclear import of CAD appears to promote optimal cell growth. UMP synthase, the bifunctional protein that catalyzes the last two steps in the pathway, was also found in both the cytoplasm and nucleus.  相似文献   

11.
12.
Y Gu  J Rosenblatt    D O Morgan 《The EMBO journal》1992,11(11):3995-4005
We have examined the role of phosphorylation in the regulation of human cyclin-dependent kinase-2 (CDK2), a protein closely related to the cell cycle regulatory kinase CDC2. We find that CDK2 from HeLa cells contains three major tryptic phosphopeptides. Analysis of site-directed mutant proteins, expressed by transient transfection of COS cells, demonstrates that the two major phosphorylation sites are Tyr15 (Y15) and Thr160 (T160). Additional phosphorylation probably occurs on Thr14 (T14). Replacement of T160 with alanine abolishes the kinase activity of CDK2, indicating that phosphorylation at this site (as in CDC2) is required for kinase activity. Mutation of Y15 and T14 stimulates kinase activity, demonstrating that phosphorylation at these sites (as in CDC2) is inhibitory. Similarly, CDK2 is activated in vitro by dephosphorylation of Y15 and T14 by the phosphatase CDC25. Analysis of HeLa cells synchronized at various cell cycle stages indicates that CDK2 phosphorylation on T160 increases during S phase and G2, when CDK2 is most active. Phosphorylation on the inhibitory sites T14 and Y15 is also maximal during S phase and G2. Thus, the activity of a subpopulation of CDK2 molecules is inhibited at a time in the cell cycle when overall CDK2 activity is increased.  相似文献   

13.
Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.  相似文献   

14.
15.
The Arabidopsis K(+) channel AKT2 possesses the remarkable property that its voltage threshold for activation can be either within the physiological range (gating mode 1), or shifted towards considerably more positive voltages (gating mode 2). Gating mode 1 AKT2 channels behave as delayed K(+)-selective inward rectifiers; while gating mode 2 AKT2 channels are K(+)-selective 'open leaks' in the physiological range of membrane potential. In the present study we have investigated modulation of AKT2 current by effectors of phosphatases/kinases in COS cells and Xenopus oocytes. These experiments show that (i) dephosphorylation can result in AKT2 channel silencing; and (ii) phosphorylation by protein kinase A (PKA) favors both recruitment of silenced AKT2 channels and transition from gating mode 1 to gating mode 2. Interestingly, phosphorylation of AKT2 by PKA in COS cells and Xenopus oocytes is favored by hyperpolarization. Two PKA phosphorylation sites (S210 and S329) were pinpointed in the region of the pore inner mouth. The role of these phosphorylation sites in the switch between the two gating modes was assessed by electrophysiological characterization of mutant channels. The molecular aspects of AKT2 regulation by phosphorylation, and the possible physiological meaning of such regulation in the plant context, are discussed.  相似文献   

16.
17.
Genetic mutations in tumor cells cause several unique metabolic phenotypes that are critical for cancer cell proliferation. Mutations in the tyrosine kinase epidermal growth factor receptor (EGFR) induce oncogenic addiction in lung adenocarcinoma (LAD). However, the linkage between oncogenic mutated EGFR and cancer cell metabolism has not yet been clearly elucidated. Here we show that EGFR signaling plays an important role in aerobic glycolysis in EGFR-mutated LAD cells. EGFR-tyrosine kinase inhibitors (TKIs) decreased lactate production, glucose consumption, and the glucose-induced extracellular acidification rate (ECAR), indicating that EGFR signaling maintained aerobic glycolysis in LAD cells. Metabolomic analysis revealed that metabolites in the glycolysis, pentose phosphate pathway (PPP), pyrimidine biosynthesis, and redox metabolism were significantly decreased after treatment of LAD cells with EGFR-TKI. On a molecular basis, the glucose transport carried out by glucose transporter 3 (GLUT3) was downregulated in TKI-sensitive LAD cells. Moreover, EGFR signaling activated carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the first step in de novo pyrimidine synthesis. We conclude that EGFR signaling regulates the global metabolic pathway in EGFR-mutated LAD cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, which is an attractive target for the development of more effective targeted therapies to treat patients with EGFR-mutated LAD.  相似文献   

18.
The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca2+ sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca2+ influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.  相似文献   

19.
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.Key words: inhibitors hijacking kinase activation, activation loop phosphorylation, dephosphorylation, phosphatase resistance, PKA, PKB, PKC  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号