共查询到7条相似文献,搜索用时 0 毫秒
1.
Talhouk RS Khalil AA Bajjani R Rahme GJ El-Sabban ME 《Cell communication & adhesion》2011,18(5):104-116
Crosstalk between gap junction intracellular communication (GJIC), STAT5 and OCT-1 in gap junction (GJ)-dependent β-casein expression was investigated. CID-9 mammary cells plated with prolactin on non-adherent substratum (poly-HEMA) expressed β-casein independent of STAT5 only in the presence of the GJIC inducer, cAMP. Nuclear STAT5 levels were not detectable. By contrast, cells on EHS-drip expressed β-casein in a STAT5-dependent manner and nuclear STAT5 levels were up-regulated. A 75 kDa OCT-1 isoform was detected in conditions that induced β-casein expression regardless of substratum. Interestingly, 40 and 28 kDa OCT-1 isoforms were induced in cells on polyHEMA with cAMP. Electrophoretic mobility shift assays (EMSA) for OCT-1 revealed two band shifts in cells on polyHEMA with cAMP and on EHS-drip, which were repressed by the GJIC inhibitor, 18α-GA. These studies demonstrated that mammary cells on polyHEMA expressed β-casein in response to prolactin in a pathway that involves GJIC and OCT-1 and is independent of STAT5 nuclear translocation. 相似文献
2.
《Cell communication & adhesion》2013,20(5):104-116
Crosstalk between gap junction intracellular communication (GJIC), STAT5 and OCT-1 in gap junction (GJ)-dependent β-casein expression was investigated. CID-9 mammary cells plated with prolactin on non-adherent substratum (poly-HEMA) expressed β-casein independent of STAT5 only in the presence of the GJIC inducer, cAMP. Nuclear STAT5 levels were not detectable. By contrast, cells on EHS-drip expressed β-casein in a STAT5-dependent manner and nuclear STAT5 levels were up-regulated. A 75 kDa OCT-1 isoform was detected in conditions that induced β-casein expression regardless of substratum. Interestingly, 40 and 28 kDa OCT-1 isoforms were induced in cells on polyHEMA with cAMP. Electrophoretic mobility shift assays (EMSA) for OCT-1 revealed two band shifts in cells on polyHEMA with cAMP and on EHS-drip, which were repressed by the GJIC inhibitor, 18α-GA. These studies demonstrated that mammary cells on polyHEMA expressed β-casein in response to prolactin in a pathway that involves GJIC and OCT-1 and is independent of STAT5 nuclear translocation. 相似文献
3.
The tissue-specific and developmental pattern of expression controlled by the proximal promoter (position –348 to+15) derived from the human -1-antitrypsin (h1AT) gene was studied in transgenic mice. The short promoter segment was linked to the chloramphenicol acetyltransferase (CAT) reporter gene. The transgene showed highly specific expression in the liver and the correct developmental pattern of regulation. Interestingly, this short promoter targets expression to the liver with a greater specificity than that reported for larger 1AT promoter fragments. 相似文献
4.
Thymosin β(10) (Tβ(10)) regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10) diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10), that can overexpress the Tβ(10) gene in cancer cells. This was accomplished by replacing the native Tβ(10) gene promoter with the human TERT promoter in Ad.TERT.Tβ(10). We investigated the cancer suppression activity of Tβ(10) and found that Ad.TERT.Tβ(10) strikingly induced cancer-specific expression of Tβ(10) as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10) decreased mitochondrial membrane potential and increased reactive oxygen species (ROS) production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10) overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10) by Ad.TERT.Tβ(10) could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells. 相似文献
5.
6.
Serova IA Dvoryanchikov GA Andreeva LE Burkov IA Dias LP Battulin NR Smirnov AV Serov OL 《Transgenic research》2012,21(3):485-498
A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice. 相似文献
7.
Shozo Ohta Tsukaho Hattori Atsushi Morikami Kenzo Nakamura 《Molecular & general genetics : MGG》1991,225(3):369-378