首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A xylanase gene (xyn10) from alkaliphilic Bacillus sp. N16-5 was cloned and expressed in Pichia pastoris. The deduced amino acid sequence has 85% identity with xylanase xyn10A from B. halodurans and contains two potential N-glycosylation sites. The glycosylated Xyn10 with MW 48 kDa can hydrolyze birchwood and oatspelt xylan. The enzyme had optimum activity at pH 7 and 70°C, with the specific activity of 92.5U/mg. The Xyn10 retained over 90% residual activity at 60°C for 30 min but lost all activity at 80°C over 15 min. Most tested ions showed no or slight inhibition effects on enzyme activity.  相似文献   

2.
A metagenomic library was generated using microbial DNA extracted from the rumen contents of a grass hay-fed dairy cow using a bacterial artificial chromosome-based vector system. Functional screening of the library identified a gene encoding a potent glycoside hydrolase, xyn10N18, localised within a xylanolytic gene cluster consisting of four open-reading frames (ORFs). The ORF, xyn10N18, encodes an endo-β-1,4-xylanase with a glycosyl hydrolase family 10 (GH10) catalytic domain, adopts a canonical α8/ß8-fold and possesses conserved catalytic glutamate residues typical of GH10 xylanases. Xyn10N18 exhibits optimal catalytic activity at 35 °C and pH 6.5 and was highly stable to pH changes retaining at least 85 % relative catalytic activity over a broad pH range (4.0–12.0). It retained 25 % of its relative activity at both low (4 °C) and high (55 °C) temperatures, however the stability of the enzyme rapidly decreased at temperatures of >40 °C. The specific activity of Xyn10N18 is enhanced by the divalent cations Mn2+ and Co2+ and is dramatically reduced by Hg2+ and Cu2+. Interestingly, EDTA had little effect on specific activity indicating that divalent cations do not function mechanistically. The enzyme was highly specific for xylan containing substrates and showed no catalytic activity against cellulose. Analysis of the hydrolysis products indicated that Xyn10N18 was an endoxylanase. Through a combination of structural modelling and in vitro enzyme characterisation this study provides an understanding of the mechanism and the substrate specificity of this enzyme serving as a starting point for directed evolution of Xyn10N18 and subsequent downstream use in industry.  相似文献   

3.
Endo-1,4-β-xylanases are mostly classified into glycoside hydrolase (GH) family 10 or 11. In this study, we examined the catalytic functions of a recombinant endo-1,4-β-xylanase belonging to GH10 (Xyn10C) from a marine bacterium, Saccharophagus degradans 2-40. Optimal activity of this enzyme was evident at 30 °C and pH 7.0, but activity remained even at low temperatures, indicating its adaptation to cold. With respect to other xylanases known to be active in cold temperatures, Xyn10C is unique in that it showed maximal activity in the presence of 2 M of NaCl. The action patterns of recombinant Xyn10C on xylans from hardwood and softwood differed in part, but the enzyme hydrolyzed polysaccharidic substrates primarily to xylobiose and xylotriose through xylo-oligosaccharides, releasing a small amount of xylose. The K m and V max values on birchwood xylan were 10.4 mg mL?1 and 253 µmol mg?1 min?1, respectively. The efficient catalytic function of Xyn10C on short-length xylo-oligosaccharide chains was similar to the typical function of other known GH10 xylanases.  相似文献   

4.
To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (α-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 °C that was 10 °C higher than the native Xyn2. The hybrid enzyme was stable at 60 °C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.  相似文献   

5.
A new xylanase gene (xynA) from the marine microorganism Zunongwangia profunda was identified to encode 374 amino acid residues. Its product (XynA) showed the highest identity (42.78 %) with a xylanase from Bacillus sp. SN5 among the characterized xylanases. XynA exhibited the highest activity at pH 6.5 and 30 °C, retaining 23 and 38 % of the optimal activity at 0 and 5 °C, respectively. XynA was not only cold active, but also halophilic, and both its activity and thermostability could be significantly increased by NaCl, showing the highest activity (180 % of the activity) at 3 M NaCl and retaining nearly 100 % activity at 5 M NaCl, compared to the absence of NaCl. In the presence of 3 M NaCl, the k cat/K m value of XynA exhibited a 3.41-fold increase for beechwood xylan compared to no added NaCl, and the residual activity of XynA increased from 23 % (no added NaCl) to 58 % after 1 h incubation at 45 °C. This may be the first report concerning a cold-adapted xylanase from a non-halophilic species that displays the highest activity at a NaCl concentration range from 3 to 5 M. The features of cold activity and salt tolerance suggest the potential application of XynA in the food industry and bioethanol production from marine seaweeds.  相似文献   

6.
Novel xylanase (EC 3.2.1.8) is in great demand due to its industrial significance. In this study, we have developed and characterized a novel xylanase-producing yeast strain. This mature xylanase gene xyn11A consists of 870 base pairs and belongs to GH11 family. The gene sequence was optimized and synthesized, and was then cloned into yeast vector pGAPZαA under the control of the constitutive GAP promoter. SDS-PAGE analysis indicates that Xyn11A is extracellularly expressed as a glycosylated protein in P. pastoris. Xyn11A is optimally active at 70 °C and pH 7.4. This xylanase retained more than 90% of its activity after incubation at 50 °C and 60 °C for up to 1 h. Xyn11A is also stable over a wide range of pH (2.0–11.0). Most metal ions tested such as copper (Cu2+) and lead (Pb2+) have little inhibitory effects on Xyn11A. It is also resistant to pepsin and proteinase K digestion, retaining 80% and 90% of its activity after digestion at 37 °C for 1 h, respectively. Those superior properties make Xyn11A a robust xylanase with great potential for industrial use. To the best of our knowledge, this is the first report of xylanase from the fungus Corynascus thermophilus.  相似文献   

7.
An agar-degrading archaeon Halococcus sp. 197A was isolated from a solar salt sample. The agarase was purified by hydrophobic column chromatography using a column of TOYOPEARL Phenyl-650 M. The molecular mass of the purified enzyme, designated as Aga-HC, was ~55 kDa on both SDS-PAGE and gel-filtration chromatography. Aga-HC released degradation products in the order of neoagarohexose, neoagarotetraose and small quantity of neoagarobiose, indicating that Aga-HC was a β-type agarase. Aga-HC showed a salt requirement for both stability and activity, being active from 0.3 M NaCl, with maximal activity at 3.5 M NaCl. KCl supported similar activities as NaCl up to 3.5 M, and LiCl up to 2.5 M. These monovalent salts could not be substituted by 3.5 M divalent cations, CaCl2 or MgCl2. The optimal pH was 6.0. Aga-HC was thermophilic, with optimum temperature of 70 °C. Aga-HC retained approximately 90 % of the initial activity after incubation for 1 hour at 65–80 °C, and retained 50 % activity after 1 hour at 95 °C. In the presence of additional 10 mM CaCl2, approximately 17 % remaining activity was detected after 30 min at 100 °C. This is the first report on agarase purified from Archaea.  相似文献   

8.
A novel endoglucanase gene, mgcel44, was isolated from a mangrove soil metagenomic library by functional-based screening. It encodes a 648-aa peptide with a catalytic domain of glycosyl hydrolase family 44. The deduced amino acid sequence of mgcel44 shares less than 50 % identity with endoglucanases in GenBank database. mgcel44 was cloned and overexpressed in Escherichia coli. The recombinant enzyme, MgCel44, has a molecular mass of 70.8 kDa as determined by SDS-PAGE. Its optimal pH and temperature for activity were 6 and 45 °C, respectively. It was highly active at 25–45 °C and pH 5–8. Its activity was enhanced in 0.5 M NaCl by >1.6-fold and stable up to 1.5 M NaCl. MgCel44 was resistant to several organic solvents and had high activity at 15 % (v/v) solvent after incubating for 24 h at 25 °C.  相似文献   

9.
The biochemical properties of a putative β-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against β-1,3-xylan and released β-1,3-xylobiose and β-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3–10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble β-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s?1. The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction.  相似文献   

10.
Xylanase III (Xyn III), a specific endoxylanase that belongs to family 10 of the glycoside hydrolases, was overexpressed in Trichoderma reesei QM9414 using a constitutive strong promoter of the gene encoding pyruvate decarboxylase (pdc). The maximum recombinant xylanase activity achieved was 817.2?±?65.2 U/mL in the transformant fermentation liquid. The productivities of Xyn III accounted for approximately 53 % of the total protein secreted by the recombinant. The enzyme was optimally active at 60 °C and pH 6. The recombinant Xyn III was stable at pH 5–8. This is the first report on the homologous expression of xyn3 in T. reesei QM9414. The properties of Xyn III make it promising in a variety of industrial use.  相似文献   

11.
A novel endoglucanase gene was cloned from Thermobifida halotolerans YIM 90462T, designated as thcel6A for being a member of glycoside hydrolase family 6. The gene was 1332 bp long and encoded a 443-amino-acid protein with a molecular mass of 45.9 kDa. The purified recombinant endoglucanase had optimal activity at 55 °C and pH 8.5. Thcel6A showed high hydrolytic activities at 25–55 °C and retained 58 % of initial activity after incubation at 90 °C for 1 h. It retained more than 80 % of activity after incubation for 12 h at pH values from 4 to 12. Thcel6A displayed higher hydrolytic activities in 5–15 % NaCl (w/v) than at 0 % NaCl. Activity increased 2.5-fold after incubation with 20 % (w/v) NaCl at 37 °C for 10 min. These properties suggest that this novel endoglucanase has potential for specific industrial application.  相似文献   

12.
Two forms of chitinase C (Chi-I and Chi-II) were purified until homogeneity from the culture supernatant of a transformantEscherichia coli harbouringchitinase C gene from the halophilic bacteriumSalinivibrio costicola strain 5SM-1. Chi-II was derived from Chi-I by C-terminal processing. Chi-I and Chi-II showed similar salinity optimum at 1–2% NaCl and retained more than 80% of their activity at 3–5% NaCl and more than 50% residual activity at 14% NaCl. The two enzymes could also well function (activity > 95%) in the absence of NaCl. Both had highest activity at pH 7.0 and 50 °C and both were stable over a wide range of pH (3.0–10.0). More than 50% activity remained at 80 °C after 60 min treatment. Among 4 major cations contained in sea water, only Mg2+ at 10 mM increased activity about 10%. Usingp-nitrophenyl-N,N′-diacetylchitobiose as substrate, Chi-I and Chi-II hadK m of 30 and 31.8 μM andV max of 10 and 9.2 μmol/h/mg protein, respectively. Chi-I and Chi-II were classified as exochitinases by product analysis of theE. coli culture supernatant with high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC).  相似文献   

13.
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25 %) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39 % activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93 % activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg?1 s?1 (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.  相似文献   

14.
The OsmC-region (osmotically induced protein family) of the two-domain esterase EstO from the psychrotolerant bacterium Pseudoalteromonas arctica has been shown to increase thermolability. In an attempt to test if these properties can be conferred to another enzyme, we genetically fused osmC to the 3′-region of the family 8 xylanase encoding gene xyn8 from P. arctica. The chimeric open reading frame xyn8-OsmC was cloned and the chimeric protein was purified after heterologous expression in Escherichia coli. Xyn8 and Xyn8-OsmC showed cold-adapted properties (more than 60% activity at 0°C) using birchwood xylan as the preferred substrate. Maximal catalytic activity is slightly shifted from 15°C (Xyn8) to 20°C for Xyn8-OsmC. Thermostability of Xyn8-OsmC is significantly changed in comparison to wild-type Xyn8. The OsmC-fusion variant showed an apparent decrease in thermostability between 40 and 45°C, while both proteins are highly instable at 50°C.  相似文献   

15.
A new xylanase from Paenibacillus barcinonensis BP-23, Xyn11E, has been identified and characterized. Xyn11E has been cloned and heterologously expressed in Escherichia coli. It is a single-domain xylanase belonging to the family 11 of glycosyl hydrolases (GH11) with a predicted molecular weight of 20.652 kDa and an isoelectric point (pI) of 8.7. Substrate specificity, kinetic properties, and mode of action of the purified xylanase were characterized. Xyn11E exhibited high activity toward branched xylans, being beechwood xylan the preferred substrate. The optimum pH and temperature of the purified enzyme were 6.5 and 50 °C, respectively. Catalytic constants were determined on beechwood xylan, on which Xyn11E showed a Km of 12.98 mg/ml and a Vmax of 3,023 U/mg. The enzyme hydrolyzed long xylooligosaccharides, while oligomers shorter than xylotetraose were not degraded. Products released from glucuronoxylans were shorter than those liberated from cereal arabinoxylans. The xylanase was dependent on P. barcinonensis BP-23 LppX for its expression in an active form. Coexpression of Xyn11E with E. coli chaperones could not replace the need of LppX, which seems to act as a specific chaperone for Xyn11E correct folding. Activity of the enzyme on bleached pulps was evaluated. Xyn11E liberated reducing sugars from ECF and TCF pulps from eucalyptus, sisal, and flax, which makes it a good candidate for the enzymatic-assisted production of high-cellulose-content pulps from paper-grade pulps.  相似文献   

16.
??-Glutamyl transpeptidase of a thermo-acidophilic archaeon Picrophilus torridus was cloned and expressed using E. coli Rosetta-pET 51b(+) expression system. The enzyme was expressed at 37 °C/200 rpm with ??-GT production of 1.99 U/mg protein after 3 h of IPTG induction. It was improved nearby 10-fold corresponding to 18.92 U/mg protein in the presence of 2 % hexadecane. The enzyme was purified by Ni2+-NTA with a purification fold of 3.6 and recovery of 61 %. It was synthesized as a precursor heterodimeric protein of 47 kDa with two subunits of 30 kDa and 17 kDa, respectively, as revealed by SDS-PAGE and western blot. The enzyme possesses hydrolase activity with optima at pH 7.0 and 55 °C. It was thermostable with a t 1/2 of 1 h at 50 °C and 30 min at 60 °C, and retained 100 % activity at 45 °C even after 24 h. It was inhibited by azaserine and DON and PMSF. Pt??-GT shared 37 % sequence identity and 53 % homology with an extremophile ??-GT from Thermoplasma acidophilum. Functional residues identified by in silico approaches were further validated by site-directed mutagenesis where Tyr327 mutated by Asn327 introduced significant transpeptidase activity.  相似文献   

17.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

18.
A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52 % amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55 % of the maximum activity when assayed at 40–75 °C, 23 % at 20 °C, 16 % at 85 °C, and even 8 % at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62 % xylanase activity and stability at the concentration of 3–30 % (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5–19.0, 15.3–19.0, 21.9–27.7, and 28.2–31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.  相似文献   

19.
A β-glucosidase gene (bgl) from Aspergillus oryzae GIF-10 was cloned, sequenced and expressed. Its full-length DNA sequence was 2,903 bp and included three introns. The full-length cDNA sequence contained an open reading frame of 2,586 nucleotides, encoding 862 amino acids with a potential secretion signal. The A. oryzae GIF-10 bgl was functionally expressed in Pichia pastoris. After 7-day induction, protein yield reached 321 mg/mL. Using salicin as the substrate, the specific activity of the purified enzyme reached 215 U/mg. The purified recombinant β-glucosidase was a 110-kDa glycoprotein with optimum catalytic activity at pH 5.0 and 50 °C. The enzyme was stable between 20 and 60 °C, and retained 65 % of its activity after being held at 60 °C for 30 min. The recombinant β-glucosidase was relatively stable in a broad range of pHs, from 4.0 to 6.5. It showed broad specific activity, hydrolyzing a range of (1-4)-β-diglycosides and (1-4)-α-diglycosides, and Mn2+ stimulated its activity significantly.  相似文献   

20.
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6–10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号