首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.  相似文献   

2.
3.
By combining ultrastructural techniques with a biochemical approach to study the mechanism of mast cell stimulus-secretion coupling and by using purified secretory granules to confirm those early biochemical events which originate from within the secretory granule, a new model for the mechanism of secretory granule exocytosis has emerged. This model not only provides the mechanism by which an activated granule can achieve fusion with the plasma membrane, but it also provides the rationale for the linking of the various early biochemical events to the process of granule activation and thus to exocytosis. Although we still do not understand how the 'activating signal', which results from the stimulation of cell surface receptors, can be conveyed to the granule to cause its activation, we are certain that this 'signal' must cause an influx of water into the matrix of the target granule. This influx of water is what initiates the granule activation process. The major intragranular events which are triggered by this water influx include: (i) de novo membrane assembly; (ii) protein proteolysis; (iii) release of arachidonic acid from matrix-bound phospholipid by phospholipase A2; (iv) initiation of the arachidonic acid cascade and the synthesis of eicosanoids; (v) rapid phospholipid turnover; and (vi) the discharge of matrix materials into the cytoplasm of the activated cell via the fusion of de novo generated vesicles with the perigranular membrane. The ejection of some matrix contents which may include histamine, Ca2+, calmodulin, protease, the products of the arachidonic acid cascade and the products of phospholipid turnover into the cytosole, may serve to turn on the various metabolic machineries needed to initiate a cellular recovery phase.  相似文献   

4.
Jain S 《FEBS letters》2002,515(1-3):146-150
Inappropriate antigen presentation by the antigen-presenting cells (APCs) is a cause of various diseases. One of the ways to combat these diseases is to immobilize the APCs near the infected tissue or a tissue which is susceptible to an antigen. The antigen is presented by the APCs present in the immobilized form on an implant and these upon binding to T(H)-cells result in triggering of a cascade of events as part of the natural immune response leading to the destruction of the antigen. This system has been modeled as a dialysis bag containing immobilized receptors inside the bag and the ligand diffusing out of the bag. The simulations show that by using the implant, the concentration of the ligand that has diffused into the tissue matrix can be substantially reduced and by suitably choosing the coupler size, the T(H)-cells can also effectively be activated.  相似文献   

5.
The frequency of lysosomal storage diseases in The Netherlands   总被引:22,自引:0,他引:22  
We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970–1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type II is the most frequent LSD with a birth prevalence of 2.0 per 100,000 live births, representing 17% of all diagnosed cases. Within the group of lipidoses, metachromatic leukodystrophy (MLD) is the most frequent LSD. MLD was diagnosed in 24% of lipidoses and the calculated birth prevalence was 1.42 per 100,000 for all types combined. Krabbe disease, diagnosed in 17% of cases, also belongs to the more frequent lipid storage diseases in The Netherlands with a birth prevalence of 1.35 per 100,000. The birth prevalence of Gaucher disease, commonly regarded as the most frequent lipid storage disease is 1.16 per 100,000 for all types combined. The combined birth prevalence for all lipid storage diseases is 6.2 per 100,000 live births. Within the group of mucopolysaccharidoses (MPSs), MPS I has the highest calculated birth prevalence of 1.19 per 100,000 (25% of all cases of MPS diagnosed), which is slightly more frequent than MPS IIIA with an estimated birth prevalence of 1.16 per 100,000. As a group, MPS III comprises 47% of all MPS cases diagnosed and the combined birth prevalence is 1.89 per 100,000 live births. The birth prevalence of MPS II is 0.67 per 100,000 (1.30 per 100,000 male live births). All other MPSs are rare. The combined birth prevalence for all MPSs is 4.5 per 100,000 live births. Mucolipidoses and oligosaccharidoses are very rare with birth prevalences between 0.04 and 0.20 for individual diseases. Only 49 cases were diagnosed between 1970 and 1996. Their combined birth prevalence is 1.0 per 100,000 live births.  相似文献   

6.
We have previously demonstrated that halofuginone, a low molecular weight quinazolinone alkaloid, is a potent inhibitor of collagen alpha1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also effectively suppresses tumor progression and metastasis in mice. These results together with the well-documented role of extracellular matrix (ECM) components and matrix degrading enzymes in formation of new blood vessels led us to investigate the effect of halofuginone on the angiogenic process. In a variety of experimental system, representing sequential events in the angiogenic cascade, halofuginone treatment resulted in profound inhibitory effect. Among these are the abrogation of endothelial cell MMP-2 expression and basement membrane invasion, capillary tube formation, and vascular sprouting, as well as deposition of subendothelial ECM. The most conclusive anti-angiogenic activity of halofuginone was demonstrated in vivo (mouse corneal micropocket assay) by showing a marked inhibition of basic fibroblast growth factor (bFGF) -induced neovascularization in response to systemic administration of halofuginone, either i.p. or in the diet. The ability of halofuginone to interfere with key events in neovascularization, together with its oral bioavailability and safe use as an anti-parasitic agent, make it a promising drug for further evaluation in the treatment of a wide range of diseases associated with pathological angiogenesis.  相似文献   

7.
8.
The turnover of proteoglycans in the extracellular matrix was studied in fibroblasts cultures derived from patients with mucopolysaccharidosis (MPS) and healthy donors. The cells were labelled with 35S-sulfate and 14C-glucosamine and it was found that in MPS-fibroblasts the rate of extracellular matrix turnover was hardly affected, where as the intracellular turnover was severely inhibited. Similar results were obtained with normal fibroblasts treated with 20 mM ammonia. Autoradiography revealed that MPS fibroblasts have a preferential accumulation of 35S-sulfate labelled material in the nuclear area, indicating that the nucleus may also be affected in MPS pathology. It is suggested that, although lysosomal enzymes are an important factor in intracellular proteoglycan turnover, they do not play a crucial role in the turnover of extracellular matrix proteoglycans.  相似文献   

9.

Introduction  

Autoimmune inflammation is a characteristic feature of rheumatoid arthritis (RA) and other autoimmune diseases. In the natural course of human autoimmune diseases, it is rather difficult to pinpoint the precise timing of the initial event that triggers the cascade of pathogenic events that later culminate into clinically overt disease. Therefore, it is a challenge to examine the early preclinical events in these disorders. Animal models are an invaluable resource in this regard. Furthermore, considering the complex nature of the pathogenic immune events in arthritis, microarray analysis offers a versatile tool to define the dynamic patterns of gene expression during the disease course.  相似文献   

10.
Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events.Wild-type (WT), MPSI, IIIA and IIIB mouse brains were analysed at 4 and 9 months of age. Quantitative immunohistochemistry showed significantly increased lysosomal compartment, GM2 ganglioside storage, neuroinflammation, decreased and mislocalised synaptic vesicle associated membrane protein, (VAMP2), and decreased post-synaptic protein, Homer-1, in layers II/III-VI of the primary motor, somatosensory and parietal cortex. Total heparan sulphate (HS), was significantly elevated, and abnormally N-, 6-O and 2-O sulphated compared to WT, potentially altering HS-dependent cellular functions. Neuroinflammation was confirmed by significantly increased MCP-1, MIP-1α, IL-1α, using cytometric bead arrays. An overall genotype effect was seen in all parameters tested except for synaptophysin staining, neuronal cell number and cortical thickness which were not significantly different from WT. MPSIIIA and IIIB showed significantly more pronounced pathology than MPSI in lysosomal storage, astrocytosis, microgliosis and the percentage of 2-O sulphation of HS. We also observed significant time progression of all genotypes from 4-9 months in lysosomal storage, astrocytosis, microgliosis and synaptic disorganisation but not GM2 gangliosidosis. Individual genotype*time differences were disparate, with significant progression from 4 to 9 months only seen for MPSIIIB with lysosomal storage, MPSI with astrocytocis and MPSIIIA with microgliosis as well as neuronal loss. Transmission electron microscopy of MPS brains revealed dystrophic axons, axonal storage, and extensive lipid and lysosomal storage. These data lend novel insight to MPS neuropathology, suggesting that MPSIIIA and IIIB have more pronounced neuropathology than MPSI, yet all are still progressive, at least in some aspects of neuropathology, from 4-9 months.  相似文献   

11.
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.  相似文献   

12.

Background  

Mucopolysaccharidoses (MPS) are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs). Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone) inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome).  相似文献   

13.
The genetic metabolic disease mucopolysaccharidosis III type C (MPS IIIC, Sanfilippo disease type C) causes progressive neurodegeneration in infants and children, leading to dementia and death before adulthood. MPS IIIC stands out among lysosomal diseases because it is the only one caused by a deficiency not of a hydrolase but of HGSNAT (heparan--glucosaminide N-acetyltransferase), which catalyzes acetylation of glycosaminoglycan heparan sulfate (HS) prior to its hydrolysis.  相似文献   

14.
Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.  相似文献   

15.
In continued efforts to develop enzymatic assays for lysosomal storage diseases appropriate for newborn screening laboratories we have synthesized novel and specific enzyme substrates for Maroteaux–Lamy (MPS VI) and Morquio A (MPS IVA) diseases. The sulfated monosaccharide derivatives were found to be converted to product by the respective enzyme in blood from healthy patients but not by blood from patients with the relevant lysosomal storage disease. The latter result shows that the designed substrates are highly selective for the respective enzymes.  相似文献   

16.
Mucopolysaccharidoses (MPS) are inherited metabolic diseases from the group of lysosomal storage disorders (LSD). They are caused by genetic defects resulting in the absence or severe deficiency in one of lysosmal hydrolases involved in degradation of glycosaminoglycans (GAG). Partially degraded GAGs are accumulated in lysosomes, causing dysfunction of cells, tissues and organs. Last years did bring some breakthrough discoveries, which were important to understand biochemical mechanisms of MPS appearance and course, as well as to develop therapeutic procedures for these inherited metabolic disorders.  相似文献   

17.
Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.  相似文献   

18.
The mucopolysaccharidoses (MPS) are a group of rare diseases characterized by deficiencies in different enzymes required for degradation of complex carbohydrates. The enzymatic deficiencies lead to lysosomal accumulation of dermatan sulphate, heparan sulphate, and keratan sulphate in different tissue resulting in multi-system complications. Six different principal types are described. Most MPS types, with the exception of MPS III, are associated with widespread skeletal abnormalities and joint disease. Authors analyzed clinical pathological and radiographical features of mucopolysaccharidoses focusing on pelvic and spine pathologies that generally limit activity and normal life so they have to be treated at the beginning of their manifestations in order to avoid major complication and improve quality of life.  相似文献   

19.
Recent studies shed new light on a potential cascade of events by which neurological diseases such as Alzheimer's lead to axonal degeneration. In this model, the pathology starts with an elevation in microtubule-associated proteins (MAPs) such as tau. This renders the microtubules less accessible to motor proteins, which impairs their capacity to sustain anterograde axonal transport of proteins and organelles. In response, the neuron hyperphosphorylates tau so that it dissociates from the microtubules. Unfortunately, the hyperphosphorylated tau forms abnormal filaments that are deleterious to the axon, and the tau-depleted microtubules become highly sensitive to microtubule-severing proteins such as katanin.  相似文献   

20.
Myeloproliferative syndromes (MPS) are a heterogeneous subclass of nonlymphoid hematopoietic neoplasms which are considered to be intrinsic to hematopoietic cells. The causes of MPS are largely unknown. Here, we demonstrate that mice deficient for retinoic acid receptor gamma (RARgamma), develop MPS induced solely by the RARgamma-deficient microenvironment. RARgamma(-/-) mice had significantly increased granulocyte/macrophage progenitors and granulocytes in bone marrow (BM), peripheral blood, and spleen. The MPS phenotype continued for the lifespan of the mice and was more pronounced in older mice. Unexpectedly, transplant studies revealed this disease was not intrinsic to the hematopoietic cells. BM from wild-type mice transplanted into mice with an RARgamma(-/-) microenvironment rapidly developed the MPS, which was partially caused by significantly elevated TNFalpha in RARgamma(-/-) mice. These data show that loss of RARgamma results in a nonhematopoietic cell-intrinsic MPS, revealing the capability of the microenvironment to be the sole cause of hematopoietic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号