首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When exposed to genotoxic stress, eukaryotic cells demonstrate a DNA damage response with delay or arrest of cell-cycle progression, providing time for DNA repair. Induction of the Epstein-Barr virus (EBV) lytic program elicited a cellular DNA damage response, with activation of the ataxia telangiectasia-mutated (ATM) signal transduction pathway. Activation of the ATM-Rad3-related (ATR) replication checkpoint pathway, in contrast, was minimal. The DNA damage sensor Mre11-Rad50-Nbs1 (MRN) complex and phosphorylated ATM were recruited and retained in viral replication compartments, recognizing newly synthesized viral DNAs as abnormal DNA structures. Phosphorylated p53 also became concentrated in replication compartments and physically interacted with viral BZLF1 protein. Despite the activation of ATM checkpoint signaling, p53-downstream signaling was blocked, with rather high S-phase CDK activity associated with progression of lytic infection. Therefore, although host cells activate ATM checkpoint signaling with response to the lytic viral DNA synthesis, the virus can skillfully evade this host checkpoint security system and actively promote an S-phase-like environment advantageous for viral lytic replication.  相似文献   

2.
ATR: an essential regulator of genome integrity   总被引:3,自引:0,他引:3  
Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.  相似文献   

3.
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.  相似文献   

4.
The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.  相似文献   

5.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

6.
Many viruses (herpes simplex virus type 1, polyomavirus, and human immunodeficiency virus type 1) require the activation of ataxia telangiectasia mutated protein (ATM) and/or Mre11 for a fully permissive infection. However, the longer life cycle of human cytomegalovirus (HCMV) may require more specific interactions with the DNA repair machinery to maximize viral replication. A prototypical damage response to the double-stranded ends of the incoming linear viral DNA was not observed in fibroblasts at early times postinfection (p.i.). Apparently, a constant low level of phosphorylated ATM was enough to phosphorylate its downstream targets, p53 and Nbs1. p53 was the only cellular protein observed to relocate at early times, forming foci in infected cell nuclei between 3.5 and 5.5 h p.i. Approximately half of these foci localized with input viral DNA, and all localized with viral UL112/113 prereplication site foci. No other DNA repair proteins localized with the virus or prereplication foci in the first 24 h p.i. When viral replication began in earnest, between 24 and 48 h p.i., there were large increases in steady-state levels and phosphorylation of many proteins involved in the damage response, presumably triggered by ATM-Rad3-related kinase activation. However, a sieving process occurred in which only certain proteins were specifically sequestered into viral replication centers and others were particularly excluded. In contrast to other viruses, activation of a damage response is neither necessary nor detrimental to infection, as neither ATM nor Mre11 was required for full virus replication and production. Thus, by preventing simultaneous relocalization of all the necessary repair components to the replication centers, HCMV subverts full activation and completion of both double-stranded break and S-phase checkpoints that should arrest all replication within the cell and likely lead to apoptosis.  相似文献   

7.
Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.  相似文献   

8.
Although the herpes simplex virus type 1 (HSV-1) genome might be expected to induce a DNA damage response, the ATR kinase is not activated in infected cells. We previously proposed that spatial uncoupling of ATR from its interaction partner, ATRIP, could be the basis for inactivation of the ATR kinase in infected cells; however, we now show that ATR and ATRIP are in fact both recruited to HSV-1 replication compartments and can be coimmunoprecipitated from infected-cell lysates. ATRIP and replication protein A (RPA) are recruited to the earliest detectable prereplicative sites, stage II microfoci. In a normal cellular DNA damage response, ATR/ATRIP are recruited to stretches of RPA-coated single-stranded DNA in an RPA- and kinase-dependent manner, resulting in the phosphorylation of RPA by ATR in damage foci. In contrast, in HSV-1-infected cells, RPA is not phosphorylated, and endogenous phosphorylated RPA is excluded from stage II microfoci; in addition, the recruitment of ATR/ATRIP is independent of RPA and the kinase activity of ATR. Furthermore, we show that ATR/ATRIP play a beneficial role in viral gene expression and virus production. Although ICP0 has been shown to be important for partial inactivation of other cellular DNA repair pathways, we show that ICP0 is not responsible for the inactivation of ATR signaling and, furthermore, that neither ATR nor ATRIP is a target of ICP0 degradation. Thus, ATR and ATRIP may function outside the context of the canonical ATR damage signaling pathway during HSV-1 infection to participate in the viral life cycle.Herpes simplex virus type 1 (HSV-1) is a large linear double-stranded DNA virus that replicates in the nucleus of the host cell. The incoming viral genome contains nicks and gaps (42), and cellular DNA repair machinery might be expected to recognize it as damaged, resulting in the activation of one or more cellular DNA damage pathways. Activation of DNA damage response pathways can result not only in repair of the damaged DNA but also in cell cycle arrest, gene silencing, and apoptosis (9). The later outcomes could result in suppression of viral gene expression and DNA replication and thus have negative consequences for lytic infection. Activation of a cellular DNA damage response during viral infection could, therefore, represent a form of intrinsic antiviral immunity (14, 15). On the other hand, HSV-1 and other DNA viruses which replicate in the nucleus have also been shown to utilize cellular DNA repair machinery to promote productive infection (28). Thus, HSV-1 has apparently evolved to manipulate the host DNA damage response by utilizing some components and inactivating others in an attempt to create an environment conducive to lytic viral infection.The cellular DNA damage response is regulated by the three phosphoinositide 3-kinase-related kinases (PIKKs), DNA-PK (DNA-dependent protein kinase), ATM (ataxia-telangiectasia-mutated), and ATR (ATM and Rad3-related) (1, 9). DNA-PK and ATM respond predominantly to double-strand breaks, and ATR responds to stalled replication forks and long stretches of single-stranded DNA (ssDNA). DNA-PK is required for nonhomologous end joining (NHEJ), while ATM activation promotes homologous recombination. Interestingly, in some cell types, the catalytic subunit of DNA-PK (DNA-PKcs) is proteolytically degraded during infection by the immediate-early (IE) protein ICP0, a viral E3 ubiquitin ligase (25, 37), thereby resulting in the probable inactivation of the NHEJ pathway. ATM kinase activity, on the other hand, is activated during HSV-1 infection once viral DNA replication is initiated (26, 47, 56). Despite phosphorylation of several ATM targets, ATM signaling is also modulated by ICP0, which degrades the ubiquitin ligases RNF8 and RNF168. The function of these ubiquitin ligases is to promote the tethering of ATM pathway proteins at sites of cellular DNA damage (27). Thus, ICP0 functions to partially inactivate portions of both the DNA-PK- and ATM-mediated repair pathways.During a cellular DNA damage response, ATM activation and processing of DNA ends generate ssDNA adjacent to double-stranded DNA (dsDNA), a structure that is known to activate ATR (9, 38). The ssDNA is coated by the cellular ssDNA binding protein, replication protein A (RPA), which then serves to recruit ATR through a direct interaction with ATR-interacting protein (ATRIP) (4, 12, 58). ATR signaling results in the phosphorylation of many substrates, including RPA and Chk1. During HSV-1 infection, the ATR substrates RPA and Chk1 are not phosphorylated (47, 54-56), indicating that ATR signaling may be disabled.A hallmark of HSV-1 infection is the reorganization of the infected-cell nucleus, resulting in the formation of large globular replication compartments as well as the rearrangement of cellular proteins involved in several homeostatic pathways. In addition to cellular DNA repair proteins, HSV-1 infection also causes the reorganization of components of the cellular protein quality control pathways, resulting in the formation of virus-induced chaperone-enriched (VICE) domains, which act to maintain nuclear protein quality control during infection (31). Viral gene expression, DNA replication, and encapsidation of viral genomes occur in replication compartments (24, 39, 41). In this work we revisit the study of proteins recruited to and restricted from replication compartments in an attempt to better understand how HSV-1 manipulates components of the cellular DNA damage response for its own benefit.  相似文献   

9.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   

10.
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.  相似文献   

11.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

12.
ABSTRACT : Unrepaired DNA double-strand breaks (DSBs) are a major cause for genomic instability. Therefore, upon detection of a DSB a rapid response must be assembled to coordinate the proper repair/signaling of the lesion or the elimination of cells with unsustainable amounts of DNA damage. Three members of the PIKK family of protein kinases -ATM, ATR and DNA-PKcs- take the lead and initiate the signaling cascade emanating from DSB sites. Whereas DNA-PKcs activity seems to be restricted to the phosphorylation of targets involved in DNA repair, ATM and ATR phosphorylate a broad spectrum of cell cycle regulators and DNA repair proteins. In the canonical model, ATM and ATR are activated by two different types of lesions and signal through two independent and alternate pathways. Specifically, ATR is activated by various forms of DNA damage, including DSBs, arising at stalled replication forks ("replication stress"), and ATM is responsible for the signaling of DSBs that are not associated with the replication machinery throughout the cell cycle. Recent evidence suggests that this model might be oversimplified and that coordinated crosstalk between ATM and ATR activation routes goes on at the core of the DNA damage response.  相似文献   

13.
Human DNA mismatch repair (MMR) is involved in the removal of DNA base mismatches that arise either during DNA replication or are caused by DNA damage. In this study, we show that the activation of the MMR component hMLH1 in response to doxorubicin (DOX) treatment requires the presence of BRCA1 and that this phenomenon is mediated by an ATM/ATR dependent phosphorylation of the hMLH1 Ser-406 residue. BRCA1 is an oncosuppressor protein with a central role in the DNA damage response and it is a critical component of the ATM/ATR mediated checkpoint signaling. Starting from a previous finding in which we demonstrated that hMLH1 is able to bind to BRCA1, in this study we asked whether BRCA1 might be the bridge for ATM/ATR dependent phosphorylation of the hMLH1 molecular partner. We found that: (i) the negative modulation of BRCA1 expression is able to produce a remarkable reversal of hMLH1 stabilization, (ii) BRCA1 is required for post-translational modification produced by DOX treatment on hMLH1 which is, in turn, attributed to the ATM/ATR activity, (iii) the serine 406 phosphorylatable residue is critical for hMLH1 activation by ATM/ATR via BRCA1. Taken together, our data lend support to the hypothesis suggesting an important role of this oncosuppressor as a scaffold or bridging protein in DNA-damage response signaling via downstream phosphorylation of the ATM/ATR substrate hMLH1.  相似文献   

14.
BK polyomavirus (BKPyV) is an emerging pathogen whose reactivation causes severe disease in transplant patients. Unfortunately, there is no specific anti-BKPyV treatment available, and host cell components that affect the infection outcome are not well characterized. In this report, we examined the relationship between BKPyV productive infection and the activation of the cellular DNA damage response (DDR) in natural host cells. Our results showed that both the ataxia-telangiectasia mutated (ATM)- and ATM and Rad-3-related (ATR)-mediated DDR were activated during BKPyV infection, accompanied by the accumulation of polyploid cells. We assessed the involvement of ATM and ATR during infection using small interfering RNA (siRNA) knockdowns. ATM knockdown did not significantly affect viral gene expression, but reduced BKPyV DNA replication and infectious progeny production. ATR knockdown had a slightly more dramatic effect on viral T antigen (TAg) and its modified forms, DNA replication, and progeny production. ATM and ATR double knockdown had an additive effect on DNA replication and resulted in a severe reduction in viral titer. While ATM mainly led to the activation of pChk2 and ATR was primarily responsible for the activation of pChk1, knockdown of all three major phosphatidylinositol 3-kinase-like kinases (ATM, ATR, and DNA-PKcs) did not abolish the activation of γH2AX during BKPyV infection. Finally, in the absence of ATM or ATR, BKPyV infection caused severe DNA damage and aberrant TAg staining patterns. These results indicate that induction of the DDR by BKPyV is critical for productive infection, and that one of the functions of the DDR is to minimize the DNA damage which is generated during BKPyV infection.  相似文献   

15.
It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.  相似文献   

16.
Luo Y  Lou S  Deng X  Liu Z  Li Y  Kleiboeker S  Qiu J 《Journal of virology》2011,85(16):8046-8055
Human parvovirus B19 (B19V) infection is restricted to erythroid progenitor cells of the human bone marrow. Although the mechanism by which the B19V genome replicates in these cells has not been studied in great detail, accumulating evidence has implicated involvement of the cellular DNA damage machinery in this process. Here, we report that, in ex vivo-expanded human erythroid progenitor cells, B19V infection induces a broad range of DNA damage responses by triggering phosphorylation of all the upstream kinases of each of three repair pathways: ATM (ataxia-telangiectasi mutated), ATR (ATM and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). We found that phosphorylated ATM, ATR, and DNA-PKcs, and also their downstream substrates and components (Chk2, Chk1, and Ku70/Ku80 complex, respectively), localized within the B19V replication center. Notably, inhibition of kinase phosphorylation (through treatment with either kinase-specific inhibitors or kinase-specific shRNAs) revealed requirements for signaling of ATR and DNA-PKcs, but not ATM, in virus replication. Inhibition of the ATR substrate Chk1 led to similar levels of decreased virus replication, indicating that signaling via the ATR-Chk1 pathway is critical to B19V replication. Notably, the cell cycle arrest characteristic of B19V infection was not rescued by interference with the activity of any of the three repair pathway kinases.  相似文献   

17.
DNA virus infection can elicit the DNA damage response in host cells, including ATM kinase activation and H2AX phosphorylation. This is considered to be the host cell response to replicating viral DNA. In contrast, we show that during infection of macrophages murine gamma-herpesvirus 68 (gammaHV68) actively induces H2AX phosphorylation by expressing a viral kinase (orf36). GammaHV68-encoded orf36 kinase and its EBV homolog, BGLF4, induce H2AX phosphorylation independently of other viral genes. The process requires the kinase domain of Orf36 and is enhanced by ATM. Orf36 is important for gammaHV68 replication in infected animals, and orf36, H2AX, and ATM are all critical for efficient gammaHV68 replication in primary macrophages. Thus, activation of proximal components of the DNA damage signaling response is an active viral kinase-driven strategy required for efficient gamma-herpesvirus replication.  相似文献   

18.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

19.
DNA damage responses to oxidative stress   总被引:12,自引:0,他引:12  
Barzilai A  Yamamoto K 《DNA Repair》2004,3(8-9):1109-1115
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.  相似文献   

20.
Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号