首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Together with seven ADAMTS-like proteins, the 19 mammalian ADAMTS proteases constitute a superfamily. ADAMTS proteases are secreted zinc metalloproteases whose hallmark is an ancillary domain containing one or more thrombospondin type 1 repeats. ADAMTS-like proteins resemble ADAMTS ancillary domains and lack proteolytic activity. Vertebrate expansion of the superfamily reflects emergence of new substrates, duplication of proteolytic activities in new contexts, and cooperative functions of the duplicated genes. ADAMTS proteases are involved in maturation of procollagen and von Willebrand factor, as well as in extracellular matrix proteolysis relating to morphogenesis, angiogenesis, ovulation, cancer, and arthritis. New insights into ADAMTS mechanisms indicate significant regulatory roles for ADAMTS ancillary domains, propeptide processing, and glycosylation. ADAMTS-like proteins appear to have regulatory roles in the extracellular matrix.  相似文献   

2.
3.
Seshi B 《Proteomics》2007,7(12):1984-1999
Global comparative proteomics is a promising new approach with broad application in basic and clinical biological science. Recent advances include the development of 2-D DIGE, a proteomic equivalent to mRNA differential display, in which differentially labeled samples are multiplexed and analyzed by high-resolution 2-DE. This study presents a new 2-D DIGE protocol, in which complex protein samples from normal and leukemic human bone marrow mesenchymal progenitor cells were used as model samples for a novel combination of liquid-phase IEF with 2-D DIGE. Using liquid-phase IEF, the normal and leukemic cells were pre-fractionated into five subproteomes after multiplexing but prior to DIGE. Under these conditions, 2-D DIGE resolved >5000 protein-containing spots within the pH range 4.6-7.0. Differential labeling combined with subsequent MALDI-MS/MS identified proteins that were differentially expressed in leukemic cells. This analysis mapped protein identities to 128 mesenchymal progenitor cell proteins with at least one unique peptide match at >95% confidence. Of these proteins, 72 (56%) were expressed more than 1.25-fold higher or lower in leukemic cells compared with normal cells (p<0.05). These data were used to infer gene ontology biological processes that may be altered in leukemic bone marrow mesenchymal progenitor cells.  相似文献   

4.
ADAMTS: a novel family of extracellular matrix proteases   总被引:10,自引:0,他引:10  
ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) is a novel family of extracellular proteases found in both mammals and invertebrates. Members of the family may be distinguished from the ADAM (a disintegrin and metalloprotease) family members based on the multiple copies of thrombospondin 1-like repeats they carry. With at least nine members in mammals alone, the ADAMTS family members are predicted by their structural domains to be extracellular matrix (ECM) proteins with a wide range of activities and functions distinct from members of the ADAM family that are largely anchored on the cell surface. ADAMTS2 is a procollagen N-proteinase, and the mutations of its gene are responsible for Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis. ADAMTS4 and ADAMTS5 are aggrecanases implicated in the degradation of cartilage aggrecan in arthritic diseases. Other members of the ADAMTS family have also been implicated in roles during embryonic development and angiogenesis. Current and future studies on this emerging group of ECM proteases may provide important insights into developmental or pathological processes involving ECM remodeling.  相似文献   

5.
ADAMTS proteases are complex secreted enzymes containing a prometalloprotease domain of the reprolysin type attached to an ancillary domain with a highly conserved structure that includes at least one thrombospondin type 1 repeat. Known functions of ADAMTS proteases include processing of procollagens and von Willebrand factor as well as catabolism of aggrecan, versican and brevican. They have been demonstrated to have important roles in connective tissue organization, coagulation, inflammation, arthritis, angiogenesis and cell migration. ADAMTS can be grouped into distinct clades within which there is conservation of modular organization, protein sequence, gene structure and possibly, of substrate preference. ADAMTS proteases are synthesized as zymogens, with constitutive proprotein convertase removal of the propeptide occurring prior to secretion. Their enzymatic specificity is heavily influenced by their ancillary domain, which plays a critical role in directing these enzymes to their substrates, the cell surface and the extracellular matrix.  相似文献   

6.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   

7.
Chinese hamster ovary (CHO) cells are widely used for the production of recombinant protein biopharmaceuticals. The purpose of this study was to investigate differences in the proteome of CHO DUKX cells expressing recombinant human bone morphogenetic protein-2 (rhBMP-2) (G5 cells) compared to cells also expressing soluble exogenous paired basic amino acid cleaving enzyme soluble paired basic amino acid cleaving enzyme (PACEsol) (3C9 cells), which has been previously found to improve the post-translational processing of the mature rhBMP-2 dimer. PACEsol co-expression was also associated with a significant increase (almost four-fold) in cellular productivity of rhBMP-2 protein. Differential proteomic expression profiling using 2-D DIGE and MALDI-TOF MS was performed to compare 3C9 and G5 cells, and revealed a list of 60 proteins that showed differential expression (up/downregulated), with a variety of different cellular functions. A substantial number of these altered proteins were found to have chaperone activity, involved with protein folding, assembly and secretion, as well as a number of proteins involved in protein translation. These results support the use of proteomic profiling as a valuable tool towards understanding the biology of bioprocess cultures.  相似文献   

8.
Metastasis is a sequential process that allows cells to move from the primary tumor and grow elsewhere. Because of their ability to cleave a variety of extracellular signaling and adhesion molecules, metalloproteases have been long considered key components of the metastatic program. However, the function of certain metalloproteases, such as ADAMTS1, is not clear and seems to depend on the cellular environment and/or the stage of tumor progression. To characterize the function of ADAMTS1, we performed two alternative proteomic approaches, difference gel electrophoresis and stable isotope labeling by amino acids in cell culture, to identify novel substrates of the metalloprotease. Both techniques showed that overexpression of ADAMTS1 leads to the release of semaphorin 3C from the extracellular matrix. Although semaphorins are well known regulators of axon guidance, accumulating evidence shows that they may also participate in tumor progression. Here, we show that the cleavage of semaphorin 3C induced by ADAMTS1 promotes the migration of breast cancer cells, indicating that the co-expression of these molecules in tumors may contribute to the metastatic program.  相似文献   

9.
Loss-of-function mutations in the secreted enzyme ADAMTS7 (a disintegrin and metalloproteinase with thrombospondin motifs 7) are associated with protection for coronary artery disease. ADAMTS7 catalytic inhibition has been proposed as a therapeutic strategy for treating coronary artery disease; however, the lack of an endogenous substrate has hindered the development of activity-based biomarkers. To identify ADAMTS7 extracellular substrates and their cleavage sites relevant to vascular disease, we used TAILS (terminal amine isotopic labeling of substrates), a method for identifying protease-generated neo–N termini. We compared the secreted proteome of vascular smooth muscle and endothelial cells expressing either full-length mouse ADAMTS7 WT, catalytic mutant ADAMTS7 E373Q, or a control luciferase adenovirus. Significantly enriched N-terminal cleavage sites in ADAMTS7 WT samples were compared to the negative control conditions and filtered for stringency, resulting in catalogs of high confidence candidate ADAMTS7 cleavage sites from our three independent TAILS experiments. Within the overlap of these discovery sets, we identified 24 unique cleavage sites from 16 protein substrates, including cleavage sites in EFEMP1 (EGF-containing fibulin-like extracellular matrix protein 1/Fibulin-3). The ADAMTS7 TAILS preference for EFEMP1 cleavage at the amino acids 123.124 over the adjacent 124.125 site was validated using both endogenous EFEMP1 and purified EFEMP1 in a binary in vitro cleavage assay. Collectively, our TAILS discovery experiments have uncovered hundreds of potential substrates and cleavage sites to explore disease-related biological substrates and facilitate activity-based ADAMTS7 biomarker development.  相似文献   

10.
Brassinosteroids (BRs) are essential hormones for growth and development of plant. In rice, BRs regulate multiple developmental processes and affect many important traits such as height, leaf angle, fertility and seed filling. We identified brassinosteroid-regulated proteins in rice using proteomic approaches and performed functional analysis of some BR-regulated proteins by overexpression experiments. Using two-dimensional difference gel electrophoresis (2-D DIGE) followed by protein identification by mass spectrometry, we compared proteomic differences in the shoots and roots of the BR-insensitive mutant d61-4 and BR-deficient mutant brd1-3. We identified a large number of proteins differentially expressed in the mutants compared with wild type control. These include a glycine-rich RNA-binding protein (OsGRP1) and a DREPP2 protein, which showed reduced levels in the BR mutants. Overexpression of these two proteins partially suppressed the dwarf phenotype of the Arabidopsis BR-insensitive mutant bri1-5. In contrast to the reduced protein level, the RNA level of OsGRP1 was not significantly affected in the BR mutants or by BR treatment, suggesting BR regulation of OsGRP1 at the posttranslational level. This study identifies many BR-regulated proteins and demonstrates that OsGRP1 functions downstream in the BR signal transduction pathway to promote cell expansion.  相似文献   

11.
The biological role of most proteases in vivo is largely unknown. Therefore, to develop robust techniques to analyze the protease degradome in cells and tissues and to elucidate their substrate degradomes we have developed a dedicated and complete human protease and inhibitor microarray that we have called the CLIP-CHIP Oligonucleotides (70-mers) for identifying all 715 human proteases, inactive homologs and inhibitors were spotted in triplicate onto glass slides with a dedicated subarray containing oligonucleotides for specific human breast carcinoma genes. Initial analyses revealed the elevated expression of a number of proteases in invasive ductal cell carcinoma including ADAMTS17, carboxypeptidases A5 and M, tryptase-gamma and matriptase-2. Matrix metalloproteinases (MMPs) showed a restricted expression pattern in both normal and cancerous breast tissues with most expressed at low levels. However, of the several MMPs expressed in significant quantities, the carcinoma samples showed only slightly elevated amounts other than for MMP-28 which was strongly elevated. To discover new protease substrates we developed a novel yeast two-hybrid approach we term 'inactive catalytic domain capture' (ICDC). Here, an inactive mutant protease catalytic domain lacking the propeptide was used as a yeast two hybrid bait to screen a human fibroblast cDNA library for interactor proteins as a substrate trap. Wnt-induced signaling protein-2 (WISP-2) was identified by ICDC and was biochemically confirmed as a new MMP substrate. In another approach we used isotope-coded affinity tag (ICAT) labeling with tandem mass spectrometry to quantitate the levels of secreted or shed extracellular proteins in MDA-MB-231 breast carcinoma cell cultures in the presence or absence of membrane type 1-MMP (MT1-MMP) overexpression. By this proteomic approach we identified and biochemically confirmed that IL-8, the serine protease inhibitor SLPI, the death receptor-6, pro-TNF-alpha and CTGF are novel substrates of MT1-MMP. The utility and quantitative nature of ICAT with MS/MS analysis as a new screen for protease substrate discovery based on detection of cleaved or shed substrate products should be readily adaptable to other classes of protease for assessing proteolytic function in a cellular context.  相似文献   

12.
Recombinant proteins secreted from plant suspension cells into the medium are susceptible to degradation by host proteases secreted during growth. Some degradation phenomena are inhibited in the presence of various protease inhibitors, such as EDTA or AEBSF/PMSF, suggesting the presence of different classes of proteases in the medium. Here, we report the results of a proteomic analysis of the extracellular medium of a Nicotiana tabacum bright yellow 2 culture. Several serine proteases belonging to a Solanaceae-specific subtilase subfamily were identified and the genes for four cloned. Their expression at the RNA level during culture growth varied depending on the gene. An in-gel protease assay (zymography) demonstrated serine protease activity in the extracellular medium from cultures. This was confirmed by testing the degradation of an antibody added to the culture medium. This particular subtilase subfamily, therefore, represents an interesting target for gene silencing to improve recombinant protein production. Key message The extracellular medium of Nicotiana tabacum suspension cells contains serine proteases that degrade antibodies.  相似文献   

13.
The endolysosomal cysteine endoprotease cathepsin L is secreted from cells in a variety of pathological conditions such as cancer and arthritis. We compared the secretome composition and extracellular proteolytic cleavage events in cell supernatants of cathepsin L-deficient and wild-type mouse embryonic fibroblasts (MEFs). Quantitative proteomic comparison of cell conditioned media indicated that cathepsin L deficiency affects, albeit in a limited manner, the abundances of extracellular matrix (ECM) components, signaling proteins, and further proteases as well as endogenous protease inhibitors. Immunodetection corroborated that cathepsin L deficiency results in decreased abundance of the ECM protein periostin and elevated abundance of matrix metalloprotease (MMP)-2. While mRNA levels of MMP-2 were not affected by cathepsin L ablation, periostin mRNA levels were reduced, potentially indicating a downstream effect. To characterize cathepsin L contribution to extracellular proteolysis, we performed terminal amine isotopic labeling of substrates (TAILS), an N-terminomic technique for the identification and quantification of native and proteolytically generated protein N-termini. TAILS identified >1500 protein N-termini. Cathepsin L deficiency predominantly reduced the magnitude of collagenous cleavage sites C-terminal to a proline residue. This contradicts cathepsin L active site specificity and indicates altered activity of further proteases as a result of cathepsin L ablation.  相似文献   

14.
ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) proteases comprise the most recently discovered branch of the extracellular metalloenzymes. Research during the last 15 years, uncovered their association with a variety of physiological and pathological processes including blood coagulation, tissue repair, fertility, arthritis and cancer. Importantly, a frequent feature of ADAMTS enzymes relates to their effects on vascular-related phenomena, including angiogenesis. Their specific roles in vascular biology have been clarified by information on their expression profiles and substrate specificity. Through their catalytic activity, ADAMTS proteases modify rather than degrade extracellular proteins. They predominantly target proteoglycans and glycoproteins abundant in the basement membrane, therefore their broad contributions to the vasculature should not come as a surprise. Furthermore, in addition to their proteolytic functions, non-enzymatic roles for ADAMTS have also been identified expanding our understanding on the multiple activities of these enzymes in vascular-related processes.  相似文献   

15.
Today biomarker discovery is one of the most active aspects of proteomic investigations. However, the wide dynamic range of plasma proteins makes the analysis very challenging because high abundance proteins tend to mask those of lower abundance. Using a large bead-based library of combinatorial peptide ligands (Equalizer beads or ProteoMiner), the dynamic range of the protein concentration is compressed, the high abundance proteins present in the sample are reduced and the low abundance proteins are enriched, while retaining representatives of all proteins within the sample. In the present study, the combination of beads with surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and two-dimensional differential gel electrophoresis (2-D DIGE) technology were evaluated considering efficiency, reproducibility, sensitivity, and compatibility. The bead technology is easily compatible with both SELDI-TOF-MS and 2-D DIGE and the samples can be analyzed directly without any processing of the sample. The use of the beads prior SELDI-TOF-MS and 2-D DIGE enabled detection of many new protein spots/peaks and increased resolution and improved intensity of low abundance proteins in a reproducible fashion compared with the depletion technique. Several proteins have been identified by the combination of beads, 2-D DIGE and MS for example different kinds of complement factors and cytoskeletal proteins. Our data suggest that integration of the bead technology with our current proteomic technologies will enhance the possibility to deliver new peptide/protein biomarker candidates in our projects.  相似文献   

16.
PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D‐DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild‐type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1–4, a mutant of B‐type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D‐DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild‐type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates.  相似文献   

17.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

18.
Embryonic development is an exceptionally dynamic process, requiring a provisional extracellular matrix that is amenable to rapid remodeling, and proteolytic or non-proteolytic mechanisms that can remodel the major components of this matrix. Versican is a chondroitin-sulfate proteoglycan that forms highly hydrated complexes with hyaluronan and is widely distributed in the provisional matrix of mammalian embryos. It has been extensively studied in the context of cardiovascular morphogenesis, neural crest cell migration and skeletal development. Analysis of Vcan transgenic mice has established the requirement for versican in cardiac development and its role in skeletogenesis. The ADAMTS family includes several versican-degrading proteases that are active during remodeling of the embryonic provisional matrix, especially during sculpting of versican-rich tissues. Versican is cleaved at specific peptide bonds by ADAMTS proteases, and the cleavage products are detectable by neo-epitope antibodies. Myocardial compaction, closure of the secondary palate (in which neural crest derived cells participate), endocardial cushion remodeling, myogenesis and interdigital web regression are developmental contexts in which ADAMTS-mediated versican proteolysis has been identified as a crucial requirement. ADAMTS proteases are expressed coordinately and function cooperatively in many of these contexts. In addition to versican clearance, ADAMTS proteases generate a bioactive versican fragment containing the N-terminal G1 domain, which we have named versikine. This review promotes the view that the embryonic extracellular matrix has evolved not only to provide a permissive environment for embryo growth and morphogenesis, but through its dissolution to influence and regulate cellular processes.  相似文献   

19.
Proteolysis is an irreversible post-translational modification that regulates many intra- and intercellular processes, including essential go/no-go decisions during cell proliferation, development and cell death. Hundreds of protease-coding genes have been identified in plants, but few have been linked to specific substrates. Conversely, proteolytic processes are frequently observed in plant biology but rarely have they been ascribed to specific proteases. In mammalian systems, unbiased system-wide proteomics analyses of protease activities have recently been tremendously successful in the identification of protease substrate repertoires, also known as substrate degradomes. Knowledge of the substrate degradome is key to understand the role of proteases in vivo. Quantitative shotgun proteomic studies have been successful in identifying protease substrates, but while simple to perform they are biased toward abundant proteins and do not reveal precise cleavage sites. Current degradomics techniques overcome these limitations by focusing on the information-rich amino- and carboxy-terminal peptides of the original mature proteins and the protease-generated neo-termini. Targeted quantitative analysis of protein termini identifies precise cleavage sites in protease substrates with exquisite sensitivity and dynamic range in in vitro and in vivo systems. This review provides an overview of state-of-the-art methods for enrichment of protein terminal peptides, and their application to protease research. These emerging degradomics techniques promise to clarify the elusive biological roles of proteases and proteolysis in plants.  相似文献   

20.
So far only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) is included in the diagnostic criteria for sporadic Creutzfeldt-Jakob disease (sCJD). However, this assay cannot be used for screening because of the high rate of false positive results in sCJD, and often negative results in variant CJD. To facilitate the differential diagnosis of CJD, we applied 2-D differential gel-electrophoresis (2-D DIGE) as a quantitative proteomic screening system for CSF proteins. We compared 36 patients suffering from sCJD with 30 patients suffering from other neurodegenerative diseases. Sample preparation was optimized in consideration of the fact that CSF is composed of blood- and brain-derived proteins, and an improved 2-D DIGE protocol was established. Using this method in combination with protein identification by MALDI-TOF-MS, several known surrogate markers of sCJD like 14-3-3 protein, neuron-specific enolase, and lactate dehydrogenase were readily identified. Moreover, a not yet identified protein with an approximate molecular mass of 85 kDa was found as marker for sCJD with high diagnostic specificity and sensitivity. We conclude that our proteomic approach is useful to differentiate CJD from other neurodegenerative diseases and expect that CSF-optimized 2-D DIGE will find broad application in the search for other brain derived proteins in CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号