首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR β-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (~900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR β-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR β-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.  相似文献   

2.
Glycine receptors (GlyRs) are ligand-gated chloride channel proteins composed of alpha- and beta-subunits. GlyRs are located to and anchored at postsynaptic sites by the receptor-associated protein gephyrin. Previous work from our laboratory has identified a core motif for gephyrin binding in the cytoplasmic loop of the GlyR beta-subunit. Here, we localized amino acid residues implicated in gephyrin binding by site-directed mutagenesis. In a novel transfection assay, a green fluorescent protein-gephyrin binding motif fusion protein was used to monitor the consequences of amino acid substitutions for beta-subunit interaction with gephyrin. Only multiple, but not single, replacements of hydrophobic side chains abolished the interaction between the two proteins. Our data are consistent with gephyrin binding being mediated by the hydrophobic side of an imperfect amphipathic helix.  相似文献   

3.
The scaffolding protein gephyrin is known to anchor glycine receptors (GlyR) at synapses and to participate in the dynamic equilibrium between synaptic and extrasynaptic GlyR in the neuronal membrane. Here we investigated the properties of this interaction in cells cotransfected with YFP-tagged gephyrin and GlyR subunits possessing an extracellular myc-tag. In HeLa cells and young neurons, single particle tracking was used to follow in real time individual GlyR, labeled with quantum dots, traveling into and out of gephyrin clusters. Analysis of the diffusion properties of two GlyR subunit types--able or unable to bind gephyrin--gave access to the association states of GlyR with its scaffolding protein. Our results indicated that an important portion of GlyR could be linked to a few molecules of gephyrin outside gephyrin clusters. This emphasizes the role of scaffolding proteins in the extrasynaptic membrane and supports the implication of gephyrin-gephyrin interactions in the stabilization of GlyR at synapses. The kinetic parameters controlling the equilibrium between GlyR inside and outside clusters were also characterized. Within clusters, we identified two subpopulations of GlyR with distinct degrees of stabilization between receptors and scaffolding proteins.  相似文献   

4.
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.  相似文献   

5.
The multifunctional scaffolding protein gephyrin is a key player in the formation of the postsynaptic scaffold at inhibitory synapses, clustering both inhibitory glycine receptors (GlyRs) and selected GABA(A) receptor (GABA(A)R) subtypes. We report a direct interaction between the GABA(A)R α3 subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs responsible for interactions with GABA(A)R α2, GABA(A)R α3, and collybistin on gephyrin overlap. Curiously, two key residues (Asp-327 and Phe-330) in the GABA(A)R α2 and α3 binding sites on gephyrin also contribute to GlyR β subunit-E domain interactions. However, isothermal titration calorimetry reveals a 27-fold difference in the interaction strength between GABA(A)R α3 and GlyR β subunits with gephyrin with dissociation constants of 5.3 μm and 0.2 μm, respectively. Taken together, these observations suggest that clustering of GABA(A)R α2, α3, and GlyRs by gephyrin is mediated by distinct mechanisms at mixed glycinergic/GABAergic synapses.  相似文献   

6.
The microtubule binding protein gephyrin plays a prominent role in establishing and maintaining a high concentration of inhibitory glycine receptors juxtaposed to presynaptic releasing sites. Here, we show that endogenous gephyrin undergoes proline-directed phosphorylation, which is followed by the recruitment of the peptidyl-prolyl isomerase Pin1. The interaction between gephyrin and Pin1 is strictly dependent on gephyrin phosphorylation and requires serine-proline consensus sites encompassing the gephyrin proline-rich domain. Upon binding, Pin1 triggers conformational changes in the gephyrin molecule, thus enhancing its ability to bind the beta subunit of GlyRs. Consistently, a downregulation of GlyR clusters was detected in hippocampal neurons derived from Pin1 knockout mice, which was paralleled by a reduction in the amplitude of glycine-evoked currents. Our results suggest that phosphorylation-dependent prolyl isomerisation of gephyrin represents a mechanism for regulating GlyRs function.  相似文献   

7.
Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its tight interaction with GlyR β, gephyrin only loosely interacts with GABA(A)R α2, whereas it has an intermediate affinity for the GABA(A)R α1 and α3 subunits. Despite the wide variation in affinities and the low overall sequence homology among the identified receptor subunits, competition assays confirmed the receptor-gephyrin interaction to be a mutually exclusive process. Selected gephyrin point mutants that critically weaken complex formation with GlyR β also abolished the GABA(A)R α1 and α3 interactions. Additionally, we identified a common binding motif with two conserved aromatic residues that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key insights regarding similarities and differences in the complex formation between gephyrin and GABA(A)Rs compared with GlyRs and, hence, the accumulation of these receptors at postsynaptic sites.  相似文献   

8.
Gephyrin is an essential and instructive molecule for the formation of inhibitory synapses. Gephyrin binds directly to the large cytoplasmic loop located between transmembrane helices three and four of the beta-subunit of the glycine receptor and to microtubules, thus promoting glycine receptor (GlyR) anchoring to the cytoskeleton and clustering in the postsynaptic membrane. Besides its structural role, gephyrin is involved in the biosynthesis of the molybdenum cofactor that is essential for all molybdenum-dependent enzymes in mammals. Gephyrin can be divided into an N-terminal trimeric G domain and a C-terminal E domain, which are connected by a central linker region. Here we have studied the in vitro interaction of gephyrin and its domains with the large cytoplasmic loop of the GlyR beta-sub-unit (GlyRbeta-loop). Binding of gephyrin to the GlyR is exclusively mediated by the E domain, and the binding site was mapped to one of its sub-domains (residues 496-654). By using isothermal titration calorimetry, a high affinity (K(d) = 0.2-0.4 microm) and low affinity (K(d) = 11-30 microm) binding site for the GlyRbeta-loop was found on holo-gephyrin and the E domain, respectively, with a binding stoichiometry of two GlyRbeta-loops per E domain in both cases. Binding of the GlyRbeta-loop does not change the oligomeric state of either full-length gephyrin or the isolated E domain.  相似文献   

9.
The brain-specific GDP/GTP exchange factor collybistin interacts with the receptor-anchoring protein gephyrin and activates the Rho-like GTPase Cdc42, which is known to regulate actin cytoskeleton dynamics. Alternative splicing creates two collybistin variants, I and II. In coexpression experiments, collybistin II has been shown to induce the formation of submembraneous gephyrin aggregates which cluster with hetero-oligomeric glycine receptors (GlyRs). Here we identified residues critical for interaction with gephyrin in the linker region between the SH3 and the DH domains of collybistin. Respective collybistin deletion mutants failed to bind gephyrin upon coexpression in heterologous cells, in GST pull-down assays and in the yeast two-hybrid system. Site-directed mutagenesis revealed polar amino acid residues as essential determinants of gephyrin binding. Furthermore, in vitro gephyrin bound simultaneously to both collybistin and the GlyR beta-subunit binding motif. Our data are consistent with collybistin-gephyrin interactions occuring during inhibitory postsynaptic membrane formation.  相似文献   

10.
Gephyrin is required for the formation of clusters of the glycine receptor (GlyR) in the neuronal postsynaptic membrane. It can make trimers and dimers through its N- and C-terminal G and E domains, respectively. Gephyrin oligomerization could thus create a submembrane lattice providing GlyR-binding sites. We investigated the relationships between the stability of cell surface GlyR and the ability of gephyrin splice variants to form oligomers. Using truncated and full-length gephyrins we found that the 13-amino acid sequence (cassette 5) prevents G domain trimerization. Moreover, E domain dimerization is inhibited by the gephyrin central L domain. All of the gephyrin variants bind GlyR beta subunit cytoplasmic loop with high affinity regardless of their cassette composition. Coexpression experiments in COS-7 cells demonstrated that GlyR bound to gephyrin harboring cassette 5 cannot be stabilized at the cell surface. This gephyrin variant was found to deplete synapses from both GlyR and gephyrin in transfected neurons. These data suggest that the relative expression level of cellular variants influence the overall oligomerization pattern of gephyrin and thus the turnover of synaptic GlyR.  相似文献   

11.
Gephyrin is a bifunctional modular protein that, in neurons, clusters glycine receptors and gamma-aminobutyric acid, type A receptors in the postsynaptic membrane of inhibitory synapses. By x-ray crystallography and cross-linking, the N-terminal G-domain of gephyrin has been shown to form trimers and the C-terminal E-domain dimers, respectively. Gephyrin therefore has been proposed to form a hexagonal submembranous lattice onto which inhibitory receptors are anchored. Here, crystal structure-based substitutions at oligomerization interfaces revealed that both G-domain trimerization and E-domain dimerization are essential for the formation of higher order gephyrin oligomers and postsynaptic gephyrin clusters. Insertion of the alternatively spliced C5' cassette into the G-domain inhibited clustering by interfering with trimerization, and mutation of the glycine receptor beta-subunit binding region prevented the localization of the clusters at synaptic sites. Together our findings show that domain interactions mediate gephyrin scaffold formation.  相似文献   

12.
Gephyrin is an ubiquitously expressed protein that, in the nervous system, is essential for synaptic anchoring of glycine receptors (GlyRs) and major GABAA receptor subtypes. The binding of gephyrin to the GlyR depends on an amphipathic motif within the large intracellular loop of the GlyRbeta subunit. The mouse gephyrin gene consists of 30 exons. Ten of these exons, encoding cassettes of 5-40 amino acids, are subject to alternative splicing (C1-C7, C4'-C6'). Since one of the cassettes, C5', has recently been reported to exclude GlyRs from GABAergic synapses, we investigated which cassettes are found in gephyrin associated with the GlyR. Gephyrin variants were purified from rat spinal cord, brain, and liver by binding to the glutathione S-transferase-tagged GlyRbeta loop or copurified with native GlyR from spinal cord by affinity chromatography and analyzed by mass spectrometry. In addition to C2 and C6', already known to be prominent, C4 was found to be abundant in gephyrin from all tissues examined. The nonneuronal cassette C3 was easily detected in liver but not in GlyR-associated gephyrin from spinal cord. C5 was present in brain and spinal cord polypeptides, whereas C5' was coisolated mainly from liver. Notably C5'-containing gephyrin bound to the GlyRbeta loop, inconsistent with its proposed selectivity for GABAA receptors. Our data show that GlyR-associated gephyrin, lacking C3, but enriched in C4 without C5, differs from other neuronal and nonneuronal gephyrin isoforms.  相似文献   

13.
Inhibitory glycine receptors (GlyRs) are densely packed in the postsynaptic membrane due to a high-affinity interaction of their β-subunits with the scaffolding protein gephyrin. Here, we used an affinity-based proteomic approach to identify the trafficking proteins Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea) as novel GlyR β-subunit (GlyRβ) interacting proteins in rat brain. Recombinant Vps35 and a central fragment of Nbea bound to the large intracellular loop of GlyRβ in glutathione-S-transferase pull-downs; in addition, Vps35 displayed binding to gephyrin. Immunocytochemical staining of spinal cord sections revealed Nbea immunoreactivity apposed to and colocalizing with marker proteins of inhibitory synapses. Our data are consistent with roles of Vps35 and Nbea in the retrieval and post-Golgi trafficking of synaptic GlyRs and possibly other neurotransmitter receptors.  相似文献   

14.
Structural basis of dynamic glycine receptor clustering by gephyrin   总被引:6,自引:0,他引:6       下载免费PDF全文
Gephyrin is a bi-functional modular protein involved in molybdenum cofactor biosynthesis and in postsynaptic clustering of inhibitory glycine receptors (GlyRs). Here, we show that full-length gephyrin is a trimer and that its proteolysis in vitro causes the spontaneous dimerization of its C-terminal region (gephyrin-E), which binds a GlyR beta-subunit-derived peptide with high and low affinity. The crystal structure of the tetra-domain gephyrin-E in complex with the beta-peptide bound to domain IV indicates how membrane-embedded GlyRs may interact with subsynaptic gephyrin. In vitro, trimeric full-length gephyrin forms a network upon lowering the pH, and this process can be reversed to produce stable full-length dimeric gephyrin. Our data suggest a mechanism by which induced conformational transitions of trimeric gephyrin may generate a reversible postsynaptic scaffold for GlyR recruitment, which allows for dynamic receptor movement in and out of postsynaptic GlyR clusters, and thus for synaptic plasticity.  相似文献   

15.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

16.
17.
18.
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity‐isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β‐GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β‐GPHN‐IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β‐GPHN‐IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two‐hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N‐terminal of the IQSEC3 IQ‐like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR‐GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.  相似文献   

19.
Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.  相似文献   

20.
T Takagi  I Pribilla  J Kirsch  H Betz 《FEBS letters》1992,303(2-3):178-180
The inhibitory glycine receptor (GlyR) is a ligand-gated chloride channel protein, whose ligand binding alpha subunit occurs in several isoforms in the mammalian central nervous system. Here we show that coexpression of the GlyR-associated protein gephyrin changes the agonist and antagonist binding affinities of GlyRs generated by alpha 2 subunit expression in 293 kidney cells. Thus, a receptor-associated protein modifies the functional properties of a neurotransmitter receptor. This may contribute to an optimization of the postsynaptic neurotransmitter response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号