首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria isolated from spinach (Spinacia oleracea) leaves oxidized glycine with a stoichiometry of CO2 evolution to O2 uptake of 2 : 1. In the absence of added substrate, the mitochondria exhibited an extremely low endogenous rate of O2 uptake.  相似文献   

2.
The stoichiometric ratio of O2 evolution to CO2 uptake during photosynthesis reveals information about reductive metabolism, including the reduction of alternative electron acceptors, such as nitrite and oxaloacetate. Recently we reported that in simultaneous measurements of CO2 uptake and O2 evolution in a sunflower leaf, O2 evolution changed by 7% more than CO2 uptake when light intensity was varied. Since the O2/CO2 exchange ratio is approximately 1, small differences are important. Thus, these gas exchange measurements need precise calibration. In this work, we describe a new calibration procedure for such simultaneous measurements, based on the changes of O2 concentration caused by the addition of pure CO2 or O2 into a flow of dry air (20.95% O2) through one and the same capillary. The relative decrease in O2 concentration during the addition of CO2 and the relative increase in O2 concentration during the addition of O2 allowed us to calibrate the CO2 and O2 scales of the measurement system with an error (relative standard deviation, RSD) of <1%. Measurements on a sunflower leaf resulted in an O2/CO2 ratio between 1.0 and 1.03 under different CO2 concentrations and light intensities, in the presence of an ambient O2 concentration of 20-50 micromol mol(-1). This shows that the percentage use of reductive power from photochemistry in synthesis of inorganic or organic matter other than CO2 assimilation in the C3 cycle is very low in mature leaves and, correspondingly, the reduction of alternative acceptors is a weak source of coupled ATP synthesis.  相似文献   

3.
Stemmet  M. C.  de Bruyn  J. A.  Zeeman  P. B. 《Plant and Soil》1962,17(3):357-364
Summary The uptake of C14O2 by the roots of intact tomato plants from solution containing Na2C14O3 was studied at different light intensities as well as in darkness.Where plants had previously been starved for CO2 for 12 hours, a higher rate of C14 uptake was observed than with plants which had been transferred directly from the soil to the radioactive solution.In general, the C14 content of the roots was slightly higher than that of the shoots. At light intensities under the compensation point and in darkness the C14 content of the shoots relative to the roots decreased. This was accompanied by release of C14O2 during respiration, indicating that the absorbed C14 was readily translocated upwards and released as C14O2 under these conditions. At light intensities above the compensation point no C14O2 was released.  相似文献   

4.
A model is proposed to investigate the hypothesis that the observed time course of whole leaf photosynthetic responses to changes in incident light energy are caused by diffusional limitations. The model leaf consists of a continuously distributed mesophyll with diffusion of CO2 in the leaf interior governed by a reaction-diffusion equation. Biochemical activation is assumed to occur on a fast time scale. Both the cases of a homogeneous and a nonhomogeneous leaf interior are investigated. Using parameter estimates available in the literature, the model predicts CO2 uptake equilibration times which are much smaller than those observed. The results strongly suggest that diffusional limitations do not significantly affect photosynthetic dynamics in variable light environments.  相似文献   

5.
6.
7.
Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.Abbreviations F680 chlorophyll fluorescence emission at 680 nm - PSI photosystem I - PSII photosystem II - Q PSII primary electron acceptor - pH transthylakoid proton gradient  相似文献   

8.
9.
10.
The requirements of the continuous analysis of effluent gas streams from aerated flash and tank fermentors are described, as are instrumental devices for measuring the oxygen and carbon dioxide content of fermentor gases. The use of a specially designed sequential gas sample for monitoring four fermentations simultaneously and a system for precise control of low air flow and pressure is explained. Equations for calculating carbon dioxide production or oxygen consumption rates and respiratory quotients are given. A discussion of the operating characteristics of a device for automatic translation of aeration data between fermentors is presented.  相似文献   

11.
The kinetics of uptake of Ca(2+) by rat heart mitochondria were studied by a spectrophotometric method with Arsenazo III indicator. The exponential rate coefficients measured with or without added phosphate increase with the amount of Ca(2+) added up to about 24mum. Evidence is given that the effect is attributable to a combination of formation of chelates at low concentrations to act as Ca(2+) buffers, with co-transport of substrate to provide more respiratory fuel. The inhibitory effect of Mg(2+) depends on the Ca(2+) concentration, so with a constant [Mg(2+)] the low concentrations of Ca(2+) are most inhibited, and the rate coefficients are still more Ca(2+)-dependent. Ca(2+) uptake is slowed by local anaesthetics such as butacaine and dibucaine, and also by propranolol and palmitoyl-CoA. After an uptake, the release of Ca(2+) was investigated. The spontaneous release involves an initially slow and small appearance of free Ca(2+) and is followed by an auto-accelerated phase. The release is accompanied by a gradual decrease in internal ATP; it is initiated by palmitoyl-CoA (reversed by carnitine), by lysophosphatidylcholine, by Na(+) salts (reversed by oligomycin) and by K(+) salts added to a K(+)-free medium containing valinomycin. The process is probably a response to an increased energy load imposed on the mitochondria by the various conditions, which include the spontaneous action of phospholipase activated by traces of Ca(2+). The problem of how much mitochondrial activity is participating in normal heart Ca(2+) turnover is discussed, and experiments showing only 7-14% exchange of the mitochondrial Ca(2+) occurring in vivo in 10 or 20min are reported.  相似文献   

12.
13.
M. M. Ludlow 《Planta》1970,91(4):285-290
Summary Net photosynthesis of tropical legume leaves increased by 44% and that of tropical grass leaves was unaffected when oxygen concentration was reduced from 21 to 0.2%. Stomatal resistance to carbon dioxide diffusion was unaltered in both cases but mesophyll resistance of legume leaves decreased with oxygen concentration. It is proposed that the decrease in mesophyll resistance is accompanied by decreases in excitation and carboxylation resistances.  相似文献   

14.
Mitochondria isolated from pea leaves (Pisum sativum L.) readily oxidized malate and glycine as substrates. The addition of glycine to mitochondria oxidizing malate in state 3 diminished the rate of malate oxidation. When glycine was added to mitochondria oxidizing malate in state 4, however, the rate of malate oxidation was either unaffected or stimulated. The reason both glycine and malate can be metabolized in state 4 appears to be that malate only used part of the electron transport capacity available in these mitochondria in this state. The remaining electron transport capacity was used by glycine, thus allowing both substrates to be oxidized simultaneously. This can be explained by differential use of two NADH dehydrogenases by glycine and malate and an increase in alternate oxidase activity upon glycine addition. These results help explain why photorespiratory glycine oxidation and its associated demand for NAD do not inhibit citric acid cycle function in leaves.  相似文献   

15.
16.
17.
The effects of added glycine hydroxamate on the photosynthetic incorporation of 14CO2 into metabolites by isolated mesophyll cells of spinach (Spinacia oleracea L.) was investigated under conditions favorable to photorespiratory (PR) metabolism (0.04% CO2 and 20% O2) and under conditions leading to nonphotorespiratory (NPR) metabolism (0.2% CO2 and 2.7% O2). Glycine hydroxamate (GH) is a competitive inhibitor of the photorespiratory conversion of glycine to serine, CO2 and NH4+. During PR fixation, addition of the inhibitor increased glycine and decreased glutamine labeling. In contrast, labeling of glycine decreased under NPR conditions. This suggests that when the rate of glycolate synthesis is slow, the primary route of glycine synthesis is through serine rather than from glycolate. GH addition increased serine labeling under PR conditions but not under NPR conditions. This increase in serine labeling at a time when glycine to serine conversion is partially blocked by the inhibitor may be due to serine accumulation via the “reverse” flow of photorespiration from 3-P-glycerate to hydroxypyruvate when glycine levels are high. GH increased glyoxylate and decreased glycolate labeling. These observations are discussed with respect to possible glyoxylate feedback inhibition of photorespiration.  相似文献   

18.
B. Grodzinski  V. S. Butt 《Planta》1976,128(3):225-231
Summary The rate at which H2O2 becomes available during glycollate oxidation for further oxidation reactions, especially that of glyoxylate to formate and CO2, in peroxisomes from spinach-beet (Beta vulgaris L., var. vulgaris) leaves has been determined by measuring O2 uptake in the presence and absence of added catalase. The rates observed under air and pure O2 were sufficient to account for the 14CO2 released from [l-14C]glycollate under these conditions; the two reactions showed similar characteristics. In the course of the reaction, a fall in catalase activity was observed concomitant with an increase in 14CO2 release. There is no evidence that catalase was disproportionately lost from the peroxisomes during isolation, and it is argued that the CO2 release observed contributes to the photorespiratory CO2 loss in intact leaves.Abbreviations DCPIP 2,6-dichlorophenolindophenol - FMN Flavin mononucleotide  相似文献   

19.
Concurrent O2 evolution, O2 uptake, and CO2 uptake by illuminated maize (Zea mays) leaves were measured using 13CO2 and 18O2. Considerable O2 uptake occurred during active photosynthesis. At CO2 compensation, O2 uptake increased. Associated with this increase was a decrease in O2 release such that a stoichiometric exchange of O2 occurred. The rate of O2 exchange at CO2 compensation was directly related to O2 concentration in the atmosphere at least up to 8% (v/v).  相似文献   

20.
Many teleost fishes have haemoglobins which possess a Root effect, a large Haldane effect and a low buffer capacity. This combination of characteristics influences the interaction between movements of oxygen and carbon dioxide in the red cell, in the respiratory epithelium, and in the tissues. The presence of the Root effect may limit oxygen uptake at the gills due to an accumulation of Bohr protons released upon oxygenation. However, the Root effect is probably important in maintaining or elevating blood PO2 during muscle capillary transit, enhancing oxygen delivery to the tissues.Bohr protons are reversibly bound to haemoglobin. The release of Bohr protons during oxygenation facilitates bicarbonate dehydration at the gills, while Bohr proton binding facilitates CO2 hydration at the tissues. In some teleost fishes, most of the Bohr protons are released and bound to haemoglobin, between 50 and 100% of haemoglobin-oxygen saturation (27). This trait is probably significant in maximizing oxygen uptake at the gills and in conserving body CO2 stores during exposure to hypoxia and exercise, when the lower reaches of the haemoglobin-oxygen equilibrium curve are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号