首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redistribution of lectin receptor sites in rat submandibular gland under hypo- and hyperthyroidism has been investigated using lectin-peroxidase technique. Lectin preparation include con A, peanut agglutinin (PNA), wheat germ agglutinin (WGA) and fucose-specific lectin from Laburnum anagyroides bark (LAB). Submandibular gland is excised on the 1st, 10th, 20th and 40th days of postnatal life and in adult rats. Hyperthyroidism, as well as hypothyroidism cause a considerable decrease of con A, WGA and LAB binding with simultaneous enhancement of PNA binding in all investigated groups of the animals. The only exception from this regularity is noted for con A: hypothyroidism in adult rats and on the 40th day of postnatal development causes enhancement of this lectin binding to granular duct epitheliocytes. Selective staining of mast cells with PNA and of separate neurocytes with con A is also demonstrated; these cells staining is affected neither by hyperthyroidism, nor by hypothyroidism. Possible interpretation of the observed phenomena is discussed.  相似文献   

2.
Histotopography of lectin receptor sites in adult mice ovary, oviduct, uterus, testis and epididymis has been investigated on light-optic level by means of lectin-peroxidase technique. Paraffin sections are treated with peanut agglutinin (PNA), soybean agglutinin (SBA), wheat germ agglutinin (WGA) and Laburnum anagyroides lectin (LAL), conjugated with horseradish peroxidase. Concanavalin A (Con A) receptor sites are visualized by indirect method. The usefulness of lectins for selective histochemic evaluation of definite organ structures is demonstrated. Zona pellucida, luteocytes, oviductal and uterine epitheliocytes are rich in receptor sites for all lectin used in the investigation. The most intense binding to zonae pellucidae glycoconjugates possess WGA and LAL, to luteocytes--PNA, SBA and LAL, to oviductal and uterine epitheliocytes--Con A and LAL. The preferential SBA binding to the acrosomal system and plasma membranes of spermatogenic cells is demonstrated. Changes in lectin-binding patterns during the maturation of intraovarian oocytes and spermatogenic cells are also studied. The perspectives of practical application of the results obtained, as well as trends in further lectin histochemistry investigations of the reproductive system are discussed.  相似文献   

3.
The human parotid, submandibular, sublingual salivary glands and pancreas have been studied with lectin--horseradish peroxidase conjugates (con A, PNA, SBA, WGA, LAL), aldehyde fuchsin and Bismark brown. Intercalated duct cells produce a specific aldehyde-fuchsin-reactive substance. These cells are found only in the submandibular and parotid, but not in the sublingual glands. Similar reactivity is found in B-insulocytes of the pancreas. Aldehyde-fuchsin marks cytoplasmic granularity of the striated duct cells of all large salivary glands. This specific granularity is also selectively stained with Bismark brown and con A. Using fucose-specific lectin from Laburum anagyroides bark (LAL), granularity in serocytes of the submandibular gland is demonstrated. Some individual variations are observed in PNA binding to serocytes of the submandibular gland. It reveals that thyroglobulin-peroxidase conjugate (previously reported as an available second-step reagent for indirect lectin histochemical methods) non-specifically binds to the striated duct cells of the submandibular gland. During control staining it is also found, that DAB-reaction for endogenous peroxidase can be used as a test-system for a selective histochemical exposure of nuclear regions of endotheliocytes, pericytes and striated duct epitheliocytes of the human salivary glands. Possible significance of the phenomena observed is discussed.  相似文献   

4.
Summary Five Fluorescein-isothiocyanate (FITC)-labelled lectins were used to study the postnatal development of carbohydrate constituents in the rat ventral prostate: Concanavalin A (Con A), wheat germ agglutinin (WGA), peanut agglutinin (PNA),Dolichos biflorus agglutinin (DBA) andRicinus communis agglutinin I (RCA-I) With all the lectins, tested, except RCA-I, specific binding sites could be shown for every stage of differentiation in the glandular epithelium. Binding sites for Con A, WGA, PNA and DBA were found from day 10 to 13 post partum onwards. Each lectin showed a characteristic localization. Binding sites for the lectins used changed to different extents during the following two weeks. After the 24th day post partum no further changes in the lectin binding pattern could be found. The development of the lectin binding properties showed that the changes in carbohydrate-containing constituents of the prostate correlate with the beginning of prostatic secretion and to prostatic epithelial differentiation. In the periacinar stroma the development of the lectin binding pattern was similar to that in the glandular epithelium. The changes of stromal binding sites for Con A and WGA during epithelial differentiation may reflect the changes of epithelial-stromal interactions in the prostate.  相似文献   

5.
Summary The binding of a panel of eight different fluorescein-conjugated lectins to rat spermatogenic cells was investigated. Particular attention was paid to the effects of different fixation methods and proteolytic enzyme digestion on the staining pattern.Concanavalin A (Con A), wheatgerm agglutinin (WGA), succinylated WGA (s-WGA) and agglutinin from gorse (UEA I) stained the cytoplasm of most germ cells as well as the spermatid acrosome. In contrast, peanut agglutinin (PNA), castor bean agglutinin (RCAI) and soy bean agglutinin (SBA) mainly stained the acrosome. The staining pattern varied depending on the fixation method used. PNA was particularly sensitive to formalin fixation, while SBA, DBA and UEA I showed decreased binding and Con A, WGA, s-WGA and RCA I were insensitive to this type of fixation. Pepsin treatment of the sections before lectin staining caused marked changes in the staining pattern; staining with PNA in formalin-fixed tissue sections was particularly improved but there was also enhanced staining with SBA and horse gram agglutinin (DBA). On the other hand, in Bouin- and particularly in acetone-fixed tissue sections, pepsin treatment decreased the staining with several of the lectins, for example WGA and UEA I.  相似文献   

6.
Chronic treatment of rats with reserpine, isoproterenol, or a combination of these two agents has been suggested as a means to produce an experimental animal model for the chronic exocrinopathy cystic fibrosis. The effect of these treatments on glycoconjugate distribution in rat submandibular gland acinar cells was investigated by quantitative lectin cytochemistry. Significant changes in wheat-germ agglutinin (WGA), soy bean agglutinin (SBA) and concanavalin A (Con A) binding sites in the mucus granules were observed, but peanut agglutinin (PNA) binding was not significantly affected. The quantitative changes in glycoconjugates in the acinar cells of the submandibular gland could be a possible explanation for the increased binding of calcium by the intracellular mucus noted in previous studies on these animal models.  相似文献   

7.
Summary Chronic treatment of rats with reserpine, isoproterenol, or a combination of these two agents has been suggested as a means to produce an experimental animal model for the chronic exocrinopathy cystic fibrosis. The effect of these treatments on glycoconjugate distribution in rat submandibular gland acinar cells was investigated by quantitative lectin cytochemistry. Significant changes in wheat-germ agglutinin (WGA), soy bean agglutinin (SBA) and concanavalin A (Con A) binding sites in the mucus granules were observed, but peanut agglutinin (PNA) binding was not significantly affected. The quantitative changes in glycoconjugates in the acinar cells of the submandibular gland could be a possible explanation for the increased binding of calcium by the intracellular mucus noted in previous studies on these animal models.  相似文献   

8.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cell surface molecules play an important role in cellular communication, migration, and adherence. Here, we show the effect of organ-derived biomatrices on endothelial cell surface glycosylation. Five different lectins (with and without neuraminidase treatment) have been used as probes in an enzyme-linked lectin assay to quantitatively detect glycoconjugates on endothelial cells (BAEC) grown on tissue culture plastic or biomatrices isolated from bovine lung, liver, and kidney. BAEC generally exhibit strong binding of concanavalin A (Con A), Ricinus communis agglutinin I (RCA-I), wheat germ agglutinin (WGA), and soybean agglutinin, and peanut agglutinin after neuraminidase pretreatment of cells (Neu-SBA and Neu-PNA), while SBA and PNA consistently bind weakly to BAEC. BAEC grown on organ-derived biomatrices exhibit significantly altered binding intensities of Con A, RCA-I, WGA, and Neu-PNA: BAEC cultured on lung- or kidney-derived biomatrices express significantly stronger binding affinities for Con A and RCA-I than BAEC grown on liver-derived biomatrix or tissue culture plastic. In contrast, BAEC binding of WGA and PNA (after treatment of cells with neuraminidase) is significantly reduced when BAEC are grown on liver- or kidney-derived biomatrix. Quantitative lectin immunogold electron microscopy reveals consistently stronger lectin binding over nuclear regions compared to junctional regions between neighboring cells. These results indicate that extracellular matrix components regulate endothelial cell surface glycoconjugate expression, which determines cellular functions, e.g., preferential adhesion of lymphocytes or metastatic tumor cells.  相似文献   

10.
Summary Epidermoid metaplasia in the hamster trachea can be produced by treatment with benzo(a)pyrene (BP) or vitamin A deficiency. To elucidate distinguishing features of the two types of lesions, lectin binding to tissue sections of tracheal explants exhibiting metaplastic lesions was assessed. In squamous metaplasia induced by vitamin A deficiency, Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and peanut agglutinin (PNA) showed faint (+) to moderate (++) binding in both basal and suprabasal cells; Concanavalin A (Con A) showed moderate binding (++) to suprabasal cells and no binding in basal cells. In the BP-induced lesions, PNA and WGA bound intensely (++++, +++, respectively) in basal cells and faintly (+) to moderately (++) in suprabasal cells. The staining seemed to be predominant at the periphery of the cells. Further, the intensity of PNA and WGA staining increased significantly after the neuraminidase treatment. DBA and Con A showed faint (+) to moderate (++) binding in the BP-induced metaplasia. The results show that in BP-induced metaplasia, cells in the basal region show preferential binding of PNA and WGA. This research was supported by grant RO1-HL32308 from the National Heart, Lung and Blood Institute, Bethesda, MD.  相似文献   

11.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

12.
Arachis hypogaea (PNA) lectin, specific for Gal-B-1,3-GalNac disaccharide and Wheat germ (WGA) lectin, specific for (GlcNac) and terminal neuraminic acid were used to identify histiocytic giant cells, osteoclast like giant cells and osteoclasts. PNA lectin, without neuraminidase predigestion was not bound by the giant cells, while they showed a strong reaction with WGA lectin. Neuraminidase pretreatment decreased WGA lectin binding, which supports that neuraminic acid plays a role in the binding of WGA. On the other hand, neuraminidase digestion liberated large amounts of PNA binding sites in every type of giant cells examined, showing a strong, intracytoplasmic granular staining. This observation is indicative of presence of PNA binding sites masked by neuraminic acid. Instead of the intracytoplasmic PNA binding in some osteoclasts a well defined part of the cytomembrane was heavily stained. We suppose that this PNA binding part of cytomembrane equals to the zone of resorption, characterized by the ruffled border of osteoclasts. Our findings indicate that a neuraminic acid substituted PNA binding glycoprotein is synthetized both in osteoclasts and histiocytic giant cells which may indicate a common origin of these cell types.  相似文献   

13.
Summary Arachis hypogaea (PNA) lectin, specific for Gal-B-1, 3-GalNac disaccharide and Wheat germ (WGA) lectin, specific for (GlcNac) and terminal neuraminic acid were used to identify histiocytic giant cells, osteoclast like giant cells and osteoclasts. PNA lectin, without neuraminidase predigestion was not bound by the giant cells, while they showed a strong reaction with WGA lectin. Neuraminidase pretreatment decreased WGA lectin binding, which supports that neuraminic acid plays a role in the binding of WGA. On the other hand, neuraminidase digestion liberated large amounts of PNA binding sites in every type of giant cells examined, showing a strong, intracytoplasmic granular staining. This observation is indicative of presence of PNA binding sites masked by neuraminic acid. Instead of the intracytoplasmic PNA binding in some osteoclasts a well defined part of the cytomembrane was havily stained. We suppose that this PNA binding part of cytomembrane equals to the zone of resorption, characterized by the ruffled border of osteoclasts. Our findings indicate that a neuraminic acid substituted PNA binding glycoprotein is synthetized both in osteoclasts and histiocytic giant cells which may indicate a common origin of these cell types.  相似文献   

14.
The lectin family is composed of mono- and oligosaccharide binding proteins that could activate specific cellular activities, such as cell-cell attachment and toxin production. In the present study, the effect of the external addition of lectins to culture media containing the freshwater cyanobacterium Microcystis aeruginosa on its metabolic activities, such as iron uptake and toxin production was investigated. Among the three lectins examined in this study (concanavalin A [Con A], wheat germ agglutinin [WGA] and peanut agglutinin [PNA]), PNA substantially increased the accumulated intracellular and extracellular iron content. The binding of PNA and Con A to M. aeruginosa cells was visualized via fluorescence microscopy using a lectin adjunct with fluorescein isothiocyanate, and resulted in carbohydrate and protein accumulation in the cellular capsule. Given that the highest carbohydrate accumulation was seen in the Con A system (where iron accumulation was relatively lower), carbohydrate quality is likely important factor that influences cellular iron accumulation. Since PNA specifically binds to sugars such as galactose and N-acetylgalactosamine, these saccharide species could be important candidates for intracellular and extracellular iron accumulation and transport. Microcystin biosynthesis was stimulated in the presence of PNA and WGA, whereas cellular iron uptake increased only in the presence of PNA. Thus, the iron uptake was not necessarily congruent with the upregulation of microcystin synthesis, which suggested that the positive effect of lectin on iron uptake is probably attributable to the PNA-assisted iron accumulation around the cell surface. Overall, the present study provides insights into the interactions of lectin that influence cellular metabolic activities such as iron uptake, extracellular polymeric substance accumulation, and toxin production.  相似文献   

15.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 107 binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37°C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

17.
As only a few cell surface markers for dendritic cells (DC) have been identified to date, this study examined the expression of ligands for lectin on different human DC populations. The ability of Concanavalin A (Con A), Wheat Germ Agglutinin (WGA), peanut agglutinin (PNA), and Helix pomatia (HPA) to bind to cell lines and PBMC and DC populations was analyzed by flow cytometry and specificity of binding confirmed using inhibitory and noninhibitory sugars. The cell lines showed non-lineage-restricted binding with Con A and WGA, independent of sialidase treatment. HPA and PNA bound to a restricted number of lines, but showed broad reactivity after sialidase treatment. The peripheral blood mononuclear cells (PBMC) and directly isolated blood DC, activated CD83(+) blood DC, epidermal Langerhans cells (LC), and monocyte-derived DC (Mo-DC) showed strong binding of Con A and WGA, both before and after sialidase treatment. No HPA binding ligands were detected on PBMC populations, including directly isolated blood DC. Following sialidase treatment CD3(+), CD16(+), and a subset of CD19(+) lymphocytes bound HPA. The lectin PNA bound weakly to CD14(+) monocytes and a subpopulation of circulating DC that were HLA-DR(hi)CDw123 Dr(hi)CDw123(dim)/(neg)CD11c(+). The HLA-DR(mod)CDw123(hi)CD11c(neg) subpopulation did not bind PNA. Without sialidase treatment LC expressed both HPA and PNA ligands, but these were either absent on activated CD83(+) blood DC or weakly expressed on Mo-DC. Following sialidase treatment PBMC populations, activated CD83(+) blood DC, and Mo-DC became PNA positive. Thus human DC express several lectin ligands and PNA binding identifies a subset of blood DC. That may reflect discrete changes associated with stages of DC development or functional maturation.  相似文献   

18.
 Lectins with different sugar specificities and binding to phagosome-lysosome systems as well as cell surface constituents were used to study glycoconjugate variation throughout culture and clonal life in Paramecium primaurelia, particularly during the transition period from logarithmic to stationary growth phase and in relation to clonal decline, respectively. These lectins include Griffonia simplicifolia agglutinin II (GS II), Ricinus communis agglutinin (RCA120), Arachis hypogea agglutinin (PNA), succinyl concanavalin A (succinyl-con A), and Triticum vulgaris agglutinin (WGA). The labeling obtained varies both according to the lectin used and to the culture and clonal age of the cells. Negative results were obtained in logarithmic growth phase cells and in clonal young cells by using lectin GS II. Conversely, lectins RCA120 and PNA bind to the cell surface, the oral region as well as cilia, and do not undergo modifications with culture or clonal age and after permeabilization. WGA binds to constituents of the cell surface, trichocyst tips, food vacuoles, the oral region, and cilia but the extent of labeling decreases as culture age increases; during clonal decline, cells show the same labeling pattern as starved cells. Finally, the lectin succinyl-con A shows a large amount of binding sites on the cell surface, on trichocyst tips, and in the oral region of logarithmic-phase cells, whereas the number of sites decreases in late stationary phase. The data obtained partly differ from those reported in the literature and the differences can be attributed to the culture conditions and species examined. Nevertheless, the assumption that a rearrangement of some glycoconjugates of membrane throughout culture and clonal life of Paramecium is confirmed. Accepted: 25 November 1996  相似文献   

19.
Carbohydrates of the zona pellucida (ZP) in mammals are believed to have a role in sperm-egg interaction. We have characterized the biochemical nature and distribution of the carbohydrate residues of rat ZP at the light (LM) and electron microscope (EM) levels, using lectins as probes. Immature female rats were induced to superovulate and cumulus-oocyte complexes were isolated from the oviduct, fixed with glutaraldehyde, and embedded in araldite for LM and LR-Gold for EM histochemistry. For examination of follicular oocytes, rat ovaries were fixed with glutaraldehyde and embedded in paraffin. The araldite or paraffin sections were deresined or deparaffinized, respectively, labeled with biotin-tagged lectins as probes, and avidin-biotin-peroxidase complex as visualant. For EM examination, thin LR-Gold sections were labeled with RCA-I colloidal gold complex (RCA/G) and stained with uranyl acetate. LM analyses indicate that in ovulated oocytes the ZP intensely binds peanut agglutinin (PNA); succinylated wheat germ agglutinin, (S-WGA), Griffonia simplisifolia agglutinin-I (GS-I) and soybean agglutinin (SBA), and to a lesser extent, lectins from Ricinus communis (RCA-I), Concanavaia ensiformis (Con A), Ulex europoeus (UEA-I), and wheat germ agglutinin (WGA). The neighboring cumulus cells are considerably less reactive and exhibit membrane staining only with Con A, WGA, and PNA. EM analysis of RCA/G binding revealed intensive binding to the inner layer region of the ZP and moderate binding to cytoplasmic vesicles of the cumulus cells. The ZP of follicular oocytes exhibits a different lectin binding pattern, expressed in staining strongly with PNA and S-WGA, and in a tendency of the lectin receptors to occur in the outer portion of the ZP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pluripotent teratocarcinoma cell line, 311, was cultured in the presence of retinoic acid (RA) and studied for the processes of early marker changes associated with cell differentiation. The cell populations that have lost peanut agglutinin (PNA), Lotus tetragonolobus agglutinin (LTA) or wheat germ agglutinin (WGA) receptor increased in proportion to the period since the start of RA treatment. The kinetics of the appearance of these receptor-negative cell populations suggests that the differentiating cells lose lectin receptors in the order of PNA, LTA and WGA. However, the changes in F9 antigen(s) and LTA receptor occurred at an equal frequency in PNA+ and PNA- cells, indicating that, although the loss of lectin receptors takes place in a distinct order, the change in each receptor itself proceeds independently of the state of other lectin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号