首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phoN gene of Salmonella typhimurium encodes nonspecific acid phosphatase (EC 3.1.3.2), which is regulated by a two-component regulatory system consisting of the phoP and phoQ genes. We cloned the phoN region into a plasmid vector by complementation of a phoN mutant strain and determined the nucleotide sequence of the phoN gene and its flanking regions. The phoN gene could encode a 26-kDa protein, which was identified by the maxicell method as the product of phoN. Results of the enzyme assay and Southern hybridization with chromosomal DNA of Escherichia coli K-12 suggests that there is no phoN gene in E. coli. The regulatory pattern of phoN in E. coli and Southern hybridization analysis of the E. coli chromosome with the S. typhimurium phoP gene suggest that E. coli K-12 also harbors the phoP and phoQ genes.  相似文献   

2.
Mutations in Salmonella typhimurium strains lacking nonspecific acid phosphatase mapped in two unlinked loci. One of these, phoP, was cotransducible by phage P22 with purB, whereas the second, phoN, was cotransducible by phage P1 with purA. Mutants with temperature-sensitive nonspecific acid phosphatase activity (measured in whole cells) were also isolated. A phoN mutant with thermolabile whole-cell activity was isolated directly from wild-type LT-2. Several other mutants with temperature-sensitive enzyme activity were also isolated as revertants of phoN mutants. These data suggest that phoN might be a structural locus for nonspecific acid phosphatase. The observation that a mutation resulting in high level of nonspecific acid phosphatase mapped in phoP suggests a possible regulatory role for this locus.  相似文献   

3.
The rates and patterns of molecular evolution in many eukaryotic organisms have been shown to be influenced by the compartmentalization of their genomes into fractions of distinct base composition and mutational properties. We have examined the Drosophila genome to explore relationships between the nucleotide content of large chromosomal segments and the base composition and rate of evolution of genes within those segments. Direct determination of the G + C contents of yeast artificial chromosome clones containing inserts of Drosophila melanogaster DNA ranging from 140-340 kb revealed significant heterogeneity in base composition. The G + C content of the large segments studied ranged from 36.9% G + C for a clone containing the hunchback locus in polytene region 85, to 50.9% G + C for a clone that includes the rosy region in polytene region 87. Unlike other organisms, however, there was no significant correlation between the base composition of large chromosomal regions and the base composition at fourfold degenerate nucleotide sites of genes encompassed within those regions. Despite the situation seen in mammals, there was also no significant association between base composition and rate of nucleotide substitution. These results suggest that nucleotide sequence evolution in Drosophila differs from that of many vertebrates and does not reflect distinct mutational biases, as a function of base composition, in different genomic regions. Significant negative correlations between codon-usage bias and rates of synonymous site divergence, however, provide strong support for an argument that selection among alternative codons may be a major contributor to variability in evolutionary rates within Drosophila genomes.  相似文献   

4.
The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.  相似文献   

5.
An assay has been developed that permits analysis of repair of A/G mismatches to C.G base pairs in cell extracts of Salmonella typhimurium LT2. This A/G mismatch repair is independent of ATP, dam methylation, and mutS gene function. The gene product of mutB has been shown to be involved in the dam-independent pathway through the in vitro assay. Moreover, specific DNA-protein complexes and an endonuclease can be detected in S. typhimurium extracts by using DNA fragments containing an A/G mismatch. These activities are not observed with substrates which have a T/G mismatch or no mismatch. The S. typhimurium endonuclease, like the A/G endonuclease found in Escherichia coli (A-L. Lu and D.-Y. Chang, Cell 54:805-812, 1988), makes incisions at the first phosphodiester bond 3' to and the the second phosphodiester bond 5' to the dA of the A/G mismatch. No incision site was detected on the other DNA strand. Extracts prepared from mutB mutants cannot form A/G mismatch-specific DNA-protein complexes and do not contain the A/G endonuclease activity. Thus the A/G mismatch specific binding and nicking activities are probably involved in the A/G mismatch repair pathway. Preliminary analysis of the mutational spectrum of the mutB strain has indicated that this mutator allele causes an increase in C.G-to-A.T transversions without affecting the frequencies of other transversion or transition events. In addition, the mutB gene has been mapped to the 64-min region of the S. typhimurium chromosome. Together, this biochemical and genetic evidence suggests that the mutB gene product of S. typhimurium is the homolog of the E. coli micA (and/or mutY) gene product.  相似文献   

6.
The phoP-phoQ operon of Salmonella typhimurium is a member of the family of two-component regulatory systems and controls expression of the phoN gene that codes for nonspecific acid phosphatase and the genes involved in the pathogenicity of the bacterium. The phoP-phoQ operon of Escherichia coli was cloned on a plasmid vector by complementation of a phoP mutant, and the 4.1-kb nucleotide sequence, which includes the phoP-phoQ operon and its flanking regions, was determined. The phoP-phoQ operon was mapped at 25 min on the standard E. coli linkage map by hybridization with the Kohara mini set library of the E. coli chromosome (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). The predicted phoP and phoQ gene products consist of 223 and 486 amino acids with estimated molecular masses of 25,534 and 55,297 Da, respectively, which correspond well with the sizes of the PhoP and PhoQ proteins identified by the maxicell method. The amino acid sequences of PhoP and PhoQ of E. coli were 93 and 86% identical, respectively, to those of S. typhimurium.  相似文献   

7.
8.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

9.
Genomic cleavage map of Salmonella typhi Ty2.   总被引:7,自引:2,他引:5       下载免费PDF全文
The genomic cleavage map of Salmonella typhi Ty2, 4,780 kb in size, was determined through digestion of the genomic DNA with endonucleases and separation of the fragments by pulsed-field gel electrophoresis. The chromosome has 33, 26, 7, and 35 sites for the enzymes XbaI, BlnI, I-CeuI, and SpeI, respectively. The fragments were arranged around the chromosome through excision of fragments from the gel, redigestion with a second enzyme, and labelling with 32P, and reelectrophoresis and named in alphabetical order. Tn10 transposons inserted in 82 different genes of Salmonella typhimurium were transduced by phage P22 into S. typhi, and the location of Tn10, and thus of the gene, was mapped through the XbaI and BlnI sites of Tn10. All seven I-CeuI sites (in rrl genes for 23S rRNA) were conserved, and the gene order within the I-CeuI fragments resembles that of S. typhimurium LT2, but the order of I-CeuI fragments is rearranged from ABCDEFG in S. typhimurium LT2 to AGCEFDB in S. typhi. In addition, there is a 500-kb inversion which covers the terminus region. Comparisons of lengths of segments between genes showed that S. typhi has segments which differ in size from those in S. typhimurium. The viaB locus, for synthesis of the Vi antigen of S. typhi, was shown to be within a 118-kb loop (a segment of DNA with no homolog in most other Salmonella species) between mel and poxA on the chromosome.  相似文献   

10.
Two hundred strains of Escherichia coli harboring Filv+ plasmids which carry a segment of the Salmonella typhimurium chromosome were isolated independently. Among them, two strains were found to harbor F' plasmids that are able to replicate in Hfr cells of E. coli; i.e., they carry a site designated poh (permissive on Hfr) of the S. typhimurium chromosome. The poh site is presumably identical with the replication origin (oriC) of the bacterial chromosome. These two plasmids carry the dnaA-uncA-rbs-ilv-cya-metE region of the chromosome of S. typhimurium. Other F' plasmids which only carried the ilv-cya-metE region were unable to be maintained in Hfr cells. The poh site (= oriC) of S. typhimurium thus is located in the uhp-ilv region of the chromosome. The two plasmids carrying the poh site of S. typhimurium can suppress the temperature-sensitive character of an E. coli mutant that carries the temperature-sensitive dnaA46 allele, when the plasmids exist in the mutant cells. This suggests that the dnaA chromosome in place of the dnaA gene product of E. coli itself. The ability of the plasmids carrying the poh site of S. typhimurium to replicate in Hfr cells of E. coli suggests that the replication system of E. coli can recognize the Salmonella replication origin.  相似文献   

11.
12.
PIKE, L. M., HU, A., RENZAGLIA, K. S. & MUSICH, P. R., 1992. Liverwort genomes display extensive structural variations. Analyses of the total genomic DNA of eight species of liverworts and two species of green algae by thermal denaturation and CsCl buoyant density gradient centrifugation reveal a high degree of structural complexity and interspecific heterogeneity. The hepatic taxa exhibit two or more DNA components of varying base composition. Average G4-C contents of total cellular DNA calculated from melting profiles are similarly variable, ranging from 38% to 53% G + C. The green alga Chara , a member of the ancestral line to land plants, shows similarities with liverworts in possessing multiple DNA components of comparable complexity, whereas Hydrodiciyon DNA displays a single component. Detailed hybridization analyses of individual density gradient fractions using α-tubulin, rRNA and ribulose 1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene probes were performed to locate the low-copy number and moderately repetitive nuclear genes, and the chloroplast chromosome, respectively. The location of each gene within the density gradient is highly variable among the organisms examined; a-tubulin occurs in fractions ranging from 44–64% G + C, rDNA in 50–64% G + C fractions, and the RbcL gene is located in fractions from 30–59% G + C. For a given species, the two nuclear genes normally overlap in their distributions within the gradient. In most instances, neither gene occurs in the major DNA components, indicating that these components may contain repetitive DNAs. The observed variation in the density of the rbcL gene implies substantial reorganization of the chloroplast genome. The overall differences in the genomic components within and between taxa provide insight into the dynamics of DNA structure that have occurred during the extended evolutionary history of these organisms.  相似文献   

13.
We have compared the recF genes from Escherichia coli K-12, Salmonella typhimurium, Pseudomonas putida, and Bacillus subtilis at the DNA and amino acid sequence levels. To do this we determined the complete nucleotide sequence of the recF gene from Salmonella typhimurium and we completed the nucleotide sequence of recF gene from Pseudomonas putida begun by Fujita et al. (1). We found that the RecF proteins encoded by these two genes contain respectively 92% and 38% amino acid identity with the E. coli RecF protein. Additionally, we have found that the S. typhimurium and P. putida recF genes will complement an E. coli recF mutant, but the recF gene from Bacillus subtilis [showing about 20% identity with E. coli (2)] will not. Amino acid sequence alignment of the four proteins identified four highly conserved regions. Two of these regions are part of a putative phosphate binding loop. In one region (position 36), we changed the lysine codon (which is essential for ATPase, GTPase and kinase activity in other proteins having this phosphate binding loop) to an arginine codon. We then tested this mutation (recF4101) on a multicopy plasmid for its ability to complement a recF chromosomal mutation and on the E. coli chromosome for its effect on sensitivity to UV irradiation. The strain with recF4101 on its chromosome is as sensitive as a null recF mutant strain. The strain with the plasmid-borne mutant allele is however more UV resistant than the null mutant strain. We conclude that lysine-36 and possibly a phosphate binding loop is essential for full recF activity. Lastly we made two chimeric recF genes by exchanging the amino terminal 48 amino acids of the S. typhimurium and E. coli recF genes. Both chimeras could complement E. coli chromosomal recF mutations.  相似文献   

14.
A novel method to calculate the G+C content of genomic DNA sequences.   总被引:2,自引:0,他引:2  
The base composition of a DNA fragment or genome is usually measured by the proportion of A+T or G+C in the sequence. The G+C content along genomic sequences is usually calculated using an overlapping or non-overlapping sliding window method. The result and accuracy of such an approach depends on the size of the window and the moving distance adopted. In this paper, a novel windowless technique to calculate the G+C content of genomic sequences is proposed. By this method, the G+C content can be calculated at different "resolution". In an extreme case, the G+C content may be computed at a specific point, rather than in a window of finite size. This is particularly useful to analyze the fine variation of base composition along genomic sequences. As the first example, the variation of G+C content along each of 16 yeast chromosomes is analyzed. The G+C-rich regions with length larger than 5 kb sequences are detected and listed in details. It is found that each chromosome consists of several G+C-rich and G+C-poor regions alternatively, i.e., a mosaic structure. Another example is to analyze the G+C content for each of the two chromosomes of the Vibrio cholerae genome. Based on the variations of the G+C content in each chromosome, it is shown that some fragments in the Vibrio cholerae genome may have been transferred from other species. Especially, the position and size of the large integron island on the smaller chromosome was precisely predicted. This method would be a useful tool for analyzing genomic sequences.  相似文献   

15.
The araB and araC genes of Erwinia carotovora were expressed in Escherichia coli and Salmonella typhimurium. The araB and araC genes in E. coli, E. carotovora, and S. typhimurium were transcribed in divergent directions. In E. carotovora, the araB and araC genes were separated by 3.5 kilobase pairs, whereas in E. coli and S. typhimurium they were separated by 147 base pairs. The nucleotide sequence of the E. carotovora araC gene was determined. The predicted sequence of AraC protein of E. carotovora was 18 and 29 amino acids longer than that of AraC protein of E. coli and S. typhimurium, respectively. The DNA sequence of the araC gene of E. carotovora was 58% homologous to that of E. coli and 59% homologous to that of S. typhimurium, with respect to the common region they share. The predicted amino acid sequence of AraC protein was 57% homologous to that of E. coli and 58% homologous to that of S. typhimurium. The 5' noncoding regions of the araB and araC genes of E. carotovora had little homology to either of the other two species.  相似文献   

16.
Multiple HindIII-restriction fragments of Salmonella typhimurium and Salmonella typhi chromosomal DNA exhibited homology with the heat-labile enterotoxin (LT1) gene of Escherichia coli as determined by Southern blot analysis. A 9.4 kb HindIII restriction fragment identified in S. typhimurium and S. typhi chromosomal DNA reacted with both eltA and eltB gene probes. However, the homology of the 9.4 kb DNA fragment from these Salmonella species was greater with eltB than eltA. In addition, a synthetic oligonucleotide probe, made to a portion of the putative GM1-ganglioside binding region of cholera toxin (CT) and LT1, hybridized with the 9.4 kb DNA fragment of S. typhimurium but not with the 9.4 kb fragment found in S. typhi isolates. The hybridization of multiple restriction fragments of Salmonella DNA with eltA and eltB gene sequences further suggests duplication of the stx operon on the chromosome of these bacteria.  相似文献   

17.
Fuchs TM  Klumpp J  Przybilla K 《Plasmid》2006,55(1):39-49
We constructed a novel temperature-sensitive vector as a tool for gene disruption by insertion-duplication mutagenesis (IDM) in Salmonella enterica and related species. A phoN insertion mutant was proven highly stable during growth in LB medium and during infection of macrophage cells in the absence of selection pressure. By progressive shortening of a phoN fragment, the minimal length for effective insertional mutagenesis driven by homologous recombination was determined to be 50 bp, allowing to disrupt even short genes that could not yet be subjected to site-specific IDM. We also showed that plasmid excision from the chromosome restores the wild-type genotype with a reliability of 98%. Intracellular recovery of the excised vector provides the option to switch between two genotypes and thus to rapidly attribute the observed mutant phenotype to the targeted gene. In addition, a fragment library was used to measure the integration rate at various chromosomal sites that varies greatly by at least 2.5 magnitudes, independently from the length of the cloned fragment.  相似文献   

18.
19.
Activity of Chi Recombinational Hotspots in SALMONELLA TYPHIMURIUM   总被引:6,自引:1,他引:5       下载免费PDF全文
Chi sites have previously been shown to stimulate homologous recombination by the Escherichia coli RecBC pathway. To test the activity of Chi in another organism, bacteriophage lambda crosses were carried out in Salmonella typhimurium strains bearing the E. coli lambda receptor protein. Chi is active in these crosses in S. typhimurium, but is less active than in the same crosses carried out in E. coli. The lower Chi activity in S. typhimurium appears to be intrinsic to the S. typhimurium RecBC enzyme, since the Chi activity in E. coli-S. typhimurium hybrids depends on the species of origin of their RecBC enzyme. For these studies we constructed and F' factor and a pBR322-derived plasmid carrying the thyA+ recC+ recB+ argA+ region of the S. typhimurium chromosome.  相似文献   

20.
Salmonella typhimurium does not produce alkaline phosphatase (nor beta-galactosidase). Nevertheless, it has the function of the phoR+ regulatory gene but lacks the function of the lacI+ regulatory gene. Several periplasmic proteins are derepressed when cells of S. typhimurium are starved for inorganic phosphate. The role of phoR is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号