首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.  相似文献   

2.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

3.
Cho YK  Li CS  Smith DV 《Chemical senses》2003,28(2):155-171
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on many aspects of ingestive behavior. These nuclei receive projections from several areas carrying gustatory and viscerosensory information, and send axons to these nuclei as well, including the nucleus of the solitary tract (NST). Gustatory responses of NST neurons are modulated by stimulation of the LH and the CeA, and by several physiological factors related to ingestive behavior. We investigated the effect of both LH and CeA stimulation on the activity of 215 taste-responsive neurons in the hamster NST. More than half of these neurons (113/215) were modulated by electrical stimulation of the LH and/or CeA; of these, 52 cells were influenced by both areas, often bilaterally. The LH influenced more neurons than the CeA (101 versus 64 cells). Contralateral stimulation of these forebrain areas was more often effective (144 responses) than ipsilateral (74). Modulatory effects were mostly excitatory (102 cells); 11 cells were inhibited, mostly by ipsilateral LH stimulation. A subset of these cells (n = 25) was examined for the effects of microinjection of DL-homocysteic acid (DLH), a glutamate receptor agonist, into the LH and/or CeA. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the stimulating sites were responsible for these effects. Other cells (n = 25) were tested for the effects of electrical stimulation of the LH and/or CeA on the responses to taste stimulation of the tongue (32 mM sucrose, NaCl and quinine hydrochloride, and 3.2 mM citric acid). Responses to taste stimuli were enhanced by the excitatory influence of the LH and/or CeA. These data demonstrate that descending influences from the LH and CeA reach many of the same cells in the gustatory NST and can modulate their responses to taste stimulation.  相似文献   

4.
Taste receptors on the left and right sides of the anterior tongue are innervated by chorda tympani (CT) fibers, which carry taste information to the ipsilateral nucleus of the solitary tract (NST). Although the anterior tongue is essential for taste, patients with unilateral CT nerve damage often report no subjective change in their taste experience. The standing theory that explains the taste constancy is the "release of inhibition", which hypothesizes that within the NST there are inhibitory interactions between inputs from the CT and glossopharyngeal nerves and that the loss of taste information from the CT is compensated by a release of inhibition on the glossopharyngeal nerve input. However, the possibility of compensation by taste input from the other side of the tongue has never been investigated in rodents. We recorded from 95 taste-responsive neurons in the NST and examined their responsiveness to stimulation of the contralateral CT. Forty-six cells were activated, mostly with excitatory responses (42 cells). Activation of NST cells induced by contralateral CT stimulation was blocked by microinjection of lidocaine into the contralateral NST but was not affected by anesthetization of the contralateral parabrachial nuclei (PbN). In addition, the NST cells that were activated by contralateral CT stimulation showed reduced responsiveness to taste stimulation after microinjection of lidocaine into the contralateral NST. These results demonstrate that nearly half of the taste neurons in the NST receive gustatory information from both sides of the tongue. This "cross talk" between bilateral NST may also contribute to the "taste constancy".  相似文献   

5.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

6.
Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the numbers of Fos-like immunoreactive neurons were observed in the ipsilateral PBN, nucleus of the solitary tract (NST), and central amygdala. The increase in neurally-activated cells within the ventral subdivision (V) of the rostral NST is particularly noteworthy because of its projections to medullary oromotor centers. A modest increase in labeled neurons occurred bilaterally within the gustatory cortex. Although there were trends for an increase in Fos-labeled neurons in the gustatory thalamus and medullary reticular formation, most changes in labeled neurons in these areas were not statistically significant. Linear regression analysis revealed a relationship between the number of taste reactivity (TR) behaviors performed during PBN stimulation and the number of Fos-like immunoreactive neurons in the caudal PBN and V of the rostral NST. These data support a role for neurons in W of the PBN and the ventral rostral NST in the initiation of TR behaviors.  相似文献   

7.
A brainstem slice preparation was used to investigate GABA-inducedresponses in the gustatory region of the nucleus of the solitarytract (NST) of the hamster. The baseline activities of 91 cellsin the rostral NST were examined extracellularly; 59 cells werelocated in the rostral central (RC), 21 in the rostral lateral(RL), six in the ventral (V) and five in the medial (M) subdivisionof the NST. Of the 80 cells in the gustatory region of the NST(RC and RL subdivisions), application of GABA produced dose-dependentinhibition in 55 (69%), excitation in 9 (11%) and no effectin 16 cells (22%). In contrast, only nine cells were responsiveto baclofen, a GABAB agonist. In all subdivision of the rostralNST, 57 cells were inhibited by GABA and the responses of 48of these were blocked by the specific GABAA antagonist, bicucullinemethiodide (BICM). Application of BICM alone often yielded anexcitatory burst of impulses; this effect was eliminated whensynaptic release was blocked by perfusion with a high magnesiumphysiological saline solution (PSS/Mg++). The GABAA-responsivecells were distributed predominantly within the RC subdivision,whereas the GABAB-responsive neurons were mostly in the RL subdivisionof the NST. The influences of GABA on the membrane properties of cells withinthe gustatory region (RC and RL subdivisions) of the NST wererecorded using conventional intracellular (16 cells) or whole-cellpatch (17 cells) recording methods. Intracellular recordingrevealed that GABA produced hyperpolarisation of the membrane,decreased the firing frequency, and increased the membrane conductance.In the patch-clamp experiments, the application of GABA evokedboth inward and outward currents, and an increase in membraneconductance. The reversal potential produced by GABA was closeto the Cl– equilibrium potential. The effects of GABAwere blocked by BICM. These results suggest that (i) GABA hasa strong inhibitory influence on rostral NST neurons, whichin the majority of cells is mediated through GABAA, receptors;and (ii) the gustatory region of the NST may contain a tonicallyactive GABAergic netw  相似文献   

8.
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.  相似文献   

9.
Previous studies have demonstrated that oral stimulation with quinine elicits Fos-like immunoreactivity in the first-order gustatory nucleus, the NST, with a different topographic distribution than sucrose or citric acid. However, it is unknown whether the quinine pattern is unique to this alkaloid or common across bitter stimuli with different chemical structures. Indeed, recent physiological experiments suggest that taste receptor cells and primary afferent neurons may exhibit selectivity for various bitter tastants. The present investigation compared the distribution of FLI in NST following stimulation with three bitter chemicals: QHCl, denatonium and propylthiouracil, stimuli that evoked Ca(2+) currents in almost entirely different sets of receptor cells. The results demonstrate that the quinine pattern is not idiosyncratic but instead generalizes to the other two tastants. Although it remains possible that intermingled but different NST neurons are activated by these stimuli, these data suggest that a specialized region in the NST is preferentially involved in processing a common aspect of bitter tastants. In contrast to citric acid, quinine, denatonium and propylthiouracil all elicited vigorous oromotor rejection responses, consistent with our earlier hypothesis that the medial third of the NST may be an afferent trigger zone for oromotor rejection.  相似文献   

10.
Taste-evoked neural responses in the nucleus of the solitary tract (NST) are subject to both excitatory and inhibitory modulation by physiological conditions that influence ingestion. Treatments that induce sodium appetite predominantly reduce NST gustatory responsiveness to sapid stimuli. When sodium appetite is aroused with 10 mg of the diuretic furosemide (Furo), however, NST gustatory neurons exhibit an enhanced responsiveness to NaCl. In addition to inducing a sodium appetite, 10 mg Furo supports a conditioned taste aversion (CTA). A lower, 2-mg dose of Furo induces an equivalent sodium appetite, but not a CTA. To determine whether the anomalous electrophysiological results reflected the adverse effects of the 10-mg dose, we replicated the original experiment but instead used 2 mg of Furo. In chronically prepared, lightly anesthetized rats, the responses of 49 single NST neurons to 12 taste stimuli were recorded after subcutaneous injections of either 2 mg Furo or saline. There was no effect of treatment on NST neural responses to the four standard taste stimuli. In the NaCl concentration series, however, 2 mg Furo evoked significantly higher responses to the two highest concentrations of NaCl. There was no effect of treatment in the sucrose concentration series. Thus, unlike other methods that induce a sodium appetite, Furo increases NST neural responsiveness to NaCl. At least as far as the first central relay, sodium appetite apparently does not depend on specific changes in the sensory neural code for taste.  相似文献   

11.
Polycystic kidney disease 1-like 3 (Pkd1l3) is expressed specifically in sour-sensing type III taste cells that have synaptic contacts with afferent nerve fibers in circumvallate (CvP) and foliate papillae (FoP) located in the posterior region of the tongue, although not in fungiform papillae (FuP) or the palate. To visualize the gustatory neural pathways that originate from type III taste cells in CvP and FoP, we established transgenic mouse lines that express the transneuronal tracer wheat germ agglutinin (WGA) under the control of the mouse Pkd1l3 gene promoter/enhancer. The WGA transgene was accurately expressed in Pkd1l3-expressing type III taste cells in CvP and FoP. Punctate WGA protein signals appeared to be detected specifically in type III taste cells but not in other types of taste cells. WGA protein was transferred primarily to a subset of neurons located in close proximity to the glossopharyngeal (GL) nerve bundles in the nodose/petrosal ganglion (NPG). WGA signals were also observed in a small population of neurons in the geniculate ganglion (GG). This result demonstrates the anatomical connection between taste receptor cells (TRCs) in the FoP and the chorda tympani (CT) nerves. WGA protein was further conveyed to neurons in a rostro-central subdivision of the nucleus of the solitary tract (NST). These findings demonstrate that the approximately 10?kb 5'-flanking region of the mouse Pkd1l3 gene functions as a type III taste cell-specific promoter/enhancer. In addition, experiments using the pkd1l3-WGA transgenic mice reveal a sour gustatory pathway that originates from TRCs in the posterior region of the tongue.  相似文献   

12.
  • 1.1. Dye-coupling among taste disk cells in the bullfrog fungiform papillae was examined histologically by injecting a fluorescent dye (Lucifer yellow) into the cell, and the effects of the dye-coupling on depolarizing responses induced by taste stimuli were studied electrophysiologically.
  • 2.2. With dye injection into a taste cell, dye-coupling was found between taste cells (23%) or between taste cell and supporting cell (28%). With dye injection into a supporting cell, dye-coupling was found between supporting cells (34%) or between supporting cell and taste cell (27%).
  • 3.3. Depolarizing responses recorded from either a taste cell or a supporting cell to stimulation with 0.5 M NaCl or 10 mM quinine-HCl were the same in amplitude whether the dye-coupling to another cell was present or not. On the other hand, depolarizing responses recorded from a taste cell for 0.5 mM acetic acid became significantly larger when dye-coupled to a supporting cell.
  • 4.4. It is concluded that gustatory transduction for acid stimuli is influenced by supporting cells coupled to taste cells.
  相似文献   

13.
1. The rat corticotrigeminal motor pathway was electrophysiologically investigated. 2. Fifty-one cortical neurons were antidromically activated by stimulation of the contralateral motor trigeminal nucleus (MTN). 3. Twenty-eight of the neurons were examined to see whether they were pyramidal tract (PT) neurons and seven were the PT neurons. 4. Forty peduncular axons were antidromically activated by stimulation of the contralateral MTN and eight of them were the PT axons. 5. Most MTN projecting axons showed slower conduction velocities than their stem anons.  相似文献   

14.
Wang Z  Singhvi A  Kong P  Scott K 《Cell》2004,117(7):981-991
Drosophila taste compounds with gustatory neurons on many parts of the body, suggesting that a fly detects both the location and quality of a food source. For example, activation of taste neurons on the legs causes proboscis extension or retraction, whereas activation of proboscis taste neurons causes food ingestion or rejection. We examined whether the features of taste location and taste quality are mapped in the fly brain using molecular, genetic, and behavioral approaches. We find that projections are segregated by the category of tastes that they recognize: neurons that recognize sugars project to a region different from those recognizing noxious substances. Transgenic axon labeling experiments also demonstrate that gustatory projections are segregated based on their location in the periphery. These studies reveal the gustatory map in the first relay of the fly brain and demonstrate that taste quality and position are represented in anatomical projection patterns.  相似文献   

15.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

16.
The localization of reticulospinal neurons responding antidromically to stimulation of fibers in the dorsolateral parts of the lateral funiculi (shown previously to be the principal collector of fibers conveying bulbar pressor influences) was determined in experiments on anesthetized and curarized cats. Most of these neurons were found to occupy the medioventral portions of the medulla, but they were concentrated in the rostral portions of the gigantocellular and ventral nuclei of the reticular formation. The velocity of conduction of excitation along axons of most reticulospinal neurons was 10–50 m/sec. Reflex responses to stimulation of the sciatic nerve with a latent period of 10–40 msec were found in 35 of 125 such cells. Stimulation of the sinus nerve did not activate them. Spontaneous activity occurred in 29 reticulospinal neurons; the mean firing rate of the various cells varied from 5 to 20/sec.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 3, pp. 266–272, May–June, 1974.  相似文献   

17.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

18.
BACKGROUND: Discrimination between edible and contaminated foods is crucial for the survival of animals. In Drosophila, a family of gustatory receptors (GRs) expressed in taste neurons is thought to mediate the recognition of sugars and bitter compounds, thereby controlling feeding behavior. RESULTS: We have characterized in detail the expression of eight Gr genes in the labial palps, the fly's main taste organ. These genes fall into two distinct groups: seven of them, including Gr66a, are expressed in 22 or fewer taste neurons in each labial palp. Additional experiments show that many of these genes are coexpressed in partially overlapping sets of neurons. In contrast, Gr5a, which encodes a receptor for trehalose, is expressed in a distinct and larger set of taste neurons associated with most chemosensory sensilla, including taste pegs. Mapping the axonal targets of cells expressing Gr66a and Gr5a reveals distinct projection patterns for these two groups of neurons in the brain. Moreover, tetanus toxin-mediated inactivation of Gr66a- or Gr5a-expressing cells shows that these two sets of neurons mediate distinct taste modalities-the perception of bitter (caffeine) and sweet (trehalose) taste, respectively. CONCLUSION: Discrimination between two taste modalities-sweet and bitter-requires specific sets of gustatory receptor neurons that express different Gr genes. Unlike the Drosophila olfactory system, where each neuron expresses a single olfactory receptor gene, taste neurons can express multiple receptors and do so in a complex Gr gene code that is unique for small sets of neurons.  相似文献   

19.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

20.
Understanding taste processing in the nervous system is a fundamental challenge of modern neuroscience. Recent research on the neural bases of taste coding in invertebrates and vertebrates allows discussion of whether labelled-line or across-fibre pattern encoding applies to taste perception. While the former posits that each gustatory receptor responds to one stimulus or a very limited range of stimuli and sends a direct 'line' to the central nervous system to communicate taste information, the latter postulates that each gustatory receptor responds to a wider range of stimuli so that the entire population of taste-responsive neurons participates in the taste code. Tastes are represented in the brain of the fruitfly and of the rat by spatial patterns of neural activity containing both distinct and overlapping regions, which are in accord with both labelled-line and across-fibre pattern processing of taste, respectively. In both animal models, taste representations seem to relate to the hedonic value of the tastant (e.g. palatable versus non-palatable). Thus, although the labelled-line hypothesis can account for peripheral taste processing, central processing remains either unknown or differs from a pure labelled-line coding. The essential task for a neuroscience of taste is, therefore, to determine the connectivity of taste-processing circuits in central nervous systems. Such connectivity may determine coding strategies that differ significantly from both the labelled-line and the across-fibre pattern models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号