首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

2.
The presence of vanadate in primary cultures of rat hepatocytes produced a significant increase in the concentration of fructose 2,6-bisphosphate and in the activity of 6-phosphofructo 2-kinase. Compared with insulin, vanadate had a more potent action on the metabolite increase, but a similar effect on the 6-phosphofructo 2-kinase activity. Both the insulin- and the vanadate-dependent enhancements of 6-phosphofructo 2-kinase were inhibited by cycloheximide which specifically blocks protein synthesis on the translational level, suggesting that the increase of the enzyme activity was due to induction rather than to a change in the catalytic activity.  相似文献   

3.
Vanadate counteracts glucagon effects in isolated rat hepatocytes   总被引:1,自引:0,他引:1  
The incubation of isolated rat hepatocytes with vanadate increased the concentration of fructose 2,6-bisphosphate without modifying 6-phosphofructo-2-kinase activity. Vanadate also reverted and prevented the decrease of fructose 2,6-bisphosphate levels, of the "active" form of the 6-phosphofructo 2-kinase and of the pyruvate kinase activity ratio produced by glucagon, by probably counteracting the increase in cyclic AMP concentration.  相似文献   

4.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

5.
The presence of adenosine (25-250 microM) or of 2-chloroadenosine (2.5-100 microM) in the incubation medium caused a marked decrease in the concentration of fructose 2,6-bisphosphate in isolated hepatocytes. This effect was accompanied by an increase in the concentration of cyclic AMP, an activation of phosphorylase and of fructose 2,6-bisphosphatase, and an inactivation of pyruvate kinase and of 6-phosphofructo-2-kinase. As a rule, the changes in the fructose 2,6-bisphosphate-modifying system were slower but more persistent than those in the activities of phosphorylase and pyruvate kinase. The effect of the nucleoside to decrease the concentration of fructose 2,6-bisphosphate was not affected by an inhibitor of adenosine transport and could not be obtained in a liver high-speed supernatant. These data indicate that the effect of adenosine to decrease the concentration of fructose 2,6-bisphosphate is mediated by the stimulation of adenylate cyclase, secondary to the binding of adenosine to membranous receptors. Like glucagon, 2-chloroadenosine stimulated gluconeogenesis in isolated hepatocytes, whereas adenosine had an opposite effect.  相似文献   

6.
When glucose was given to starved rats there was an increase in both 6-phosphofructo 2-kinase and pyruvate kinase activity and a decrease in fructose 2,6-bisphosphatase activity 30 min and 60 min later. These changes were accompanied by an increase in glycogen deposition and by modest, but significant increases in fructose 2,6-bisphosphate levels at the same time. Metabolite measurements indicated that flux through 6-phosphofructo 1-kinase and pyruvate kinase were increased. These results suggest that although glycogen deposition may occur via the gluconeogenic pathway, glycolysis is activated at the same time by changes in the phosphorylation state of key regulatory enzymes as well as by the small rise in fructose 2,6-bisphosphate.  相似文献   

7.
Fructose 2,6-bisphosphate was identified in Saccharomyces cerevisiae grown on glucose both by its property to be an acid-labile stimulator of 6-phosphofructo 1-kinase and by its ability to be quantitatively converted into fructose 6-phosphate under mild acid conditions. Fructose 2,6-bisphosphate was undetectable in cells grown on non-glucose sources. When glucose was added to the culture, fructose 2,6-bisphosphate was rapidly synthesized, reaching within 1 min concentrations able to cause a profound inhibition of fructose 1,6-bisphosphatase and a great stimulation of 6-phosphofructo 1-kinase.  相似文献   

8.
To obtain information on the biological significance of yeast fructose-2,6-bisphosphate 6-phosphatase, kinetic data of the purified enzyme [(1987) Eur. J. Biochem. 164, 27-30] have been measured. Maximal activity was found between pH 6 and 7, the apparent Michaelis constant with fructose 2,6-bisphosphate was 7.2 microM at pH 6.0 and 79 microM at pH 7.0. Concentrations required for 50% inhibition of the enzyme at pH 6.0 were 8 microM Fru2P, 45 microM G1c6P, 80 microM Fru6P and 200 microM inorganic phosphate. The known intracellular steady-state level of about 10 microM fructose 2,6-bisphosphate in the presence of glucose is likely to be the result of a balance between the rapid synthesis of fructose 2,6-bisphosphate catalyzed by 6-phosphofructose 2-kinase and a fructose 2,6-bisphosphate degrading activity. The biological function of fructose-2,6-bisphosphate 6-phosphatase with an apparent Michaelis constant between 7 and 79 microM fructose 2,6-bisphosphate at pH 6-7 is therefore suggested to participate in the maintenance of a steady-state level of fructose 2,6-bisphosphate in a concentration range that fits well with the Michaelis constant of the enzyme.  相似文献   

9.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

10.
Fructose 2,6-bisphosphate is physiologically one of the most potent activators of yeast 6-phosphofructo-1-kinase. The glycolytic oscillation observed in cell-free cytoplasmic extracts of the yeast Saccharomyces cerevisiae responds to the addition of fructose 2,6-bisphosphate in micromolar concentrations by showing a pronounced decrease of both the amplitude and the period. The oscillations can be suppressed completely by 10 microM and above of this activator but recovers almost fully (95%) to the unperturbed state after 3 h. Fructose 2,6-bisphosphate shifts the phases of the oscillations by a maximal +/- 60 degrees. Oscillations in concentration of endogenous fructose 2,6-bisphosphate in the extract were also observed. Fructose 2,6-bisphosphate alters the dynamic properties of 6-phosphofructo-1-kinase which are vital for its role as the 'oscillophore'. However, the minute amount (approximately 0.3 microM) of endogenous fructose 2,6-bisphosphate and the phase relationship of its oscillations compared with other metabolites indicate that this activator is not an essential component of the oscillatory mechanism. Further support for this conclusion is the observation of sustained oscillations in both the extracts and a population of intact cells of a mutant strain (YFA) of S. cerevisiae with no detectable fructose 2,6-bisphosphate (less than 5 nM).  相似文献   

11.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

12.
We explored the stereospecificity of the fructose 2,6-bisphosphate site of rabbit muscle 6-phosphofructo-1-kinase by determination of the activation constants (Ka) of several structurally locked analogues of this potent metabolic regulator. Under the assay conditions used, the Ka of fructose 2,6-bisphosphate was 0.12 microM. The most effective synthetic analogues and their Ka's were 2,5-anhydro-D-mannitol 1,6-bisphosphate (2.9 microM), 1,4-butanediol bisphosphate (6.6 microM), hexitol 1,6-bisphosphate (40 microM), and 2,5-anhydro-D-glucitol 1,6-bisphosphate (47 microM). Ten other bisphosphate compounds were much less effective as activators of the enzyme. These findings indicate that, unlike its active site, this allosteric site of 6-phosphofructo-1-kinase does not require the furanose ring. Its basic requirement seems to be a compound with two phosphate groups approximately 9 A apart. Although the free hydroxy groups of the activator do not seem to be essential, their presence enhances appreciably the affinity of the ligand for this regulatory site.  相似文献   

13.
The intragastric administration of ethanol to fed rats caused in their liver, within about 1 h, a 20-fold decrease in the concentration of fructose 2,6-bisphosphate, an activation of fructose 2,6-bisphosphatase, an inactivation of phosphofructo-2-kinase but no change in the concentration of cyclic AMP. Incubation of isolated hepatocytes in the presence of ethanol caused a rapid increase in the concentration of sn-glycerol 3-phosphate and a slower and continuous decrease in the concentration of fructose 2,6-bisphosphate with no change in that of hexose 6-phosphates. There was also a relatively slow activation of fructose 2,6-bisphosphatase and inactivation of phosphofructo-2-kinase. Glycerol and acetaldehyde had effects similar to those of ethanol on the concentration of phosphoric esters in the isolated liver cells. 4-Methylpyrazole cancelled the effect of ethanol but reinforced those of acetaldehyde. High concentrations of glucose or of dihydroxyacetone caused an increase in the concentration of hexose 6-phosphates and counteracted the effect of ethanol to decrease the concentration of fructose 2,6-bisphosphate. As a rule, hexose 6-phosphates had a positive effect and sn-glycerol 3-phosphate had a negative effect on the concentration of fructose 2,6-bisphosphate in the liver, so that, at a given concentration of hexose 6-phosphates, there was an inverse relationship between the concentration of fructose 2,6-bisphosphate and that of sn-glycerol 3-phosphate. These effects could be explained by the ability of sn-glycerol 3-phosphate to inhibit phosphofructo-2-kinase and to counteract the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate. sn-Glycerol 3-phosphate had also the property to accelerate the inactivation of phosphofructo-2-kinase by cyclic AMP-dependent protein kinase whereas fructose 2,6-bisphosphate had the opposite effect. The changes in the activity of phosphofructo-2-kinase and fructose 2,6-bisphosphatase appear therefore to be the result rather than the cause of the decrease in the concentration of fructose 2,6-bisphosphate.  相似文献   

14.
In epithelial cells isolated from rat small intestine, we have studied the influence of vasoactive intestinal peptide (VIP), a neurotransmitter which markedly increases enterocyte cyclic AMP, and of two cyclic AMP analogues (8-bromo cyclic AMP and N6,2'-O-dibutyryl cyclic AMP) on the rate of glycolysis, fructose 2,6-bisphosphate concentration and 6-phosphofructo-2-kinase activity, as well as on the rate of 3-O-methyl-D-[14C]glucose uptake. Our results show that, without affecting the rate of 3-O-methyl-D-[14C]glucose accumulation, VIP and cyclic AMP analogues were able to inhibit glucose consumption and L-lactate formation by isolated rat enterocytes. These effects occurred parallel to a significant decrease in the cellular concentration of fructose 2,6-bisphosphate and to a partial inactivation of 6-phosphofructo-2-kinase. These findings support the hypothesis that VIP inhibits glycolysis in rat enterocytes through a cyclic AMP-dependent mechanism.  相似文献   

15.
Vasopressin, phenylephrine, and A23187 cause an accumulation of fructose 2,6-bisphosphate in hepatocytes from fed rats, but not in Ca2+-depleted hepatocytes from fed rats or in phosphorylase kinase-deficient hepatocytes from (gsd/gsd) rats. The effect of vasopressin and phenylephrine is not found in hepatocytes from overnight-starved rats. Thus, the accumulation of fructose 2,6-bisphosphate by these agents may depend on the stimulation of glycogenolysis and on the resulting accumulation of hexose 6-phosphate. In support of this hypothesis, conditions are described for the enzymatic synthesis of fructose 2,6-bisphosphate from fructose 6-phosphate and Mg-ATP in liver extracts. Half-maximal activity (0.8 nmol/min.g) is obtained with about 60 microM fructose 6-phosphate, and the activity can be separated fom phosphofructokinase by ammonium sulfate fractionation. Treatment of rats or isolated hepatocytes with glucagon results in a 4-5-fold decrease in the maximal activity of this enzyme.  相似文献   

16.
Both the synthesis and the degradation of Fru-2,6-P2 are catalyzed by a single enzyme protein; ie, the enzyme is bifunctional. This protein, which we have designated 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase is an important enzyme in the regulation of hepatic carbohydrate metabolism since its activity determines the steady-state concentration of fructose 2,6-P2, an activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. Regulation of the bifunctional enzyme in intact cells is a complex function of both covalent modification via phosphorylation/dephosphorylation and the influence of substrates and low molecular weight effectors. Recent evidence suggests that both reactions may proceed by two-step transfer mechanisms with different phosphoenzyme intermediates. The enzyme catalyzes exchange reactions between ADP and ATP and between fructose 6-P and fructose 2,6-P2. A labeled phosphoenzyme is formed rapidly during incubation with [2-32P]Fru-2,6-P2. The labeled residue has been identified as 3-phosphohistidine. However, it was not possible to demonstrate significant labeling of the enzyme directly from [gamma-32P]ATP. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a fructose 2,6-bisphosphatase site which is readily phosphorylated by fructose 2,6-P2. Additional evidence in support of two active sites include: limited proteolysis with thermolysin results in loss of 6-phosphofructo 2-kinase activity and activation of fructose 2,6-bisphosphatase, mixed function oxidation results in inactivation of the 6-phosphofructo 2-kinase but no affect on the fructose 2,6-bisphosphatase, N-ethylmaleimide treatment also inactivates the kinase but does not affect the bisphosphatase, and p-chloromercuribenzoate immediately inactivates the fructose 2,6-bisphosphatase but not the 6-phosphofructo 2-kinase. Our findings indicate that the bifunctional enzyme is a rather complicated enzyme; a dimer, probably with two catalytic sites reacting with sugar phosphate, and with an unknown number of regulatory sites for most of its substrates and products. Three enzymes from Escherichia coli, isocitric dehydrogenase kinase/phosphatase, glutamine-synthetase adenylyltransferase, and the uridylyltransferase for the regulatory protein PII in the glutamine synthetase cascade system also catalyze opposing reactions probably at two discrete sites. All four enzymes are important in the regulation of metabolism and may represent a distinct class of regulatory enzymes.  相似文献   

17.
1. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase occurred in Euglena gracilis SM-ZK, and is located in cytosol. 2. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase were partially purified, and both enzyme activities were not separated during the partial purification. 3. The pH optimum for fructose 6-phosphate, 2-kinase activity was 7.0. The saturation curve of the enzyme activity for ATP concentration was hyperbolic, and the Km value for the substrate was 0.88 mM. On the other hand, the saturation curve of the enzyme activity for fructose 6-phosphate concentration was sigmoidal, and the K0.5 value for the substrate was 70 microM. 4. The pH optimum for fructose 2,6-bisphosphatase activity was 6.5. The saturation curve for fructose 2,6-bisphosphate concentration was sigmoidal, and the K0.5 value for the substrate was 1.29 microM. Fructose 2,6-bisphosphate showed a substrate inhibition at high concentration over 5 microM, and the enzyme activity was completely inhibited by 20 microM of fructose 2,6-bisphosphate.  相似文献   

18.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

19.
Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast   总被引:5,自引:0,他引:5  
When benzoate (2 mM, pH 3.5) was added together with glucose (0.1 M) to a suspension of Saccharomyces cerevisiae in the stationary phase, it caused a relative increase in the concentration of glucose 6-phosphate and fructose 6-phosphate and a decrease in the concentration of fructose 1,6-bisphosphate. These effects are in confirmation of similar observations made by Krebs et al. [Biochem. J. 214, 657-663 (1983)] and are indicative of an inhibition of 6-phosphofructo-1-kinase. Benzoate also caused an about fourfold relative decrease in the concentration of fructose 2,6-bisphosphate, an increase in that of cyclic AMP with no change in that of ATP. It also greatly decreased the activation of 6-phosphofructo-2-kinase, but not that of trehalase, both of which normally occur upon addition of glucose to a yeast suspension. When added 10 min after glucose, benzoate caused a rapid (within 2-3 min) decrease in fructose 2,6-bisphosphate concentration and in 6-phosphofructo-2-kinase activity. In the presence of benzoate, there was also a parallel decrease in the concentration of fructose 2,6-bisphosphate and in the rate of ethanol production when the external pH was dropped from 5.0 to 2.5, with minimal change in the concentration of ATP. Purified 6-phosphofructo-2-kinase was inhibited by benzoate and also by an acid pH. Experiments with cell-free extracts did not provide an explanation for the rapid disappearance of fructose-2,6-bisphosphate or the inactivation of 6-phosphofructo-2-kinase in yeast upon addition of benzoate.  相似文献   

20.
Production of [14C]glucose from [14C]lactate in the perfused livers of 24-h fasted adrenalectomized rats was not stimulated by 1 nM glucagon but was significantly increased by 10 nM hormone. Crossover analysis of glycolytic intermediates in these livers revealed a significant reduction in glucagon action at site(s) between fructose 6-phosphate and fructose 1,6-bisphosphate as a result of adrenalectomy. Site(s) between pyruvate and P-enolpyruvate was not affected. In isolated hepatocytes, adrenalectomy reduced glucagon response in gluconeogenesis while not affecting glucagon inactivation of pyruvate kinase. A distinct lack of glucagon action on 6-phosphofructo-1-kinase activity was noted in these cells. When hepatocytes were incubated with 30 mM glucose, lactate gluconeogenesis was greatly stimulated by glucagon. A reduction in both sensitivity and responsiveness to the hormone in gluconeogenesis was seen in the adrenalectomized rat. These changes were well correlated with similar impairment in glucagon action on 6-phosphofructo-1-kinase activity and fructose 2,6-bisphosphate content in hepatocytes from adrenalectomized rats incubated with 30 mM glucose. These results suggest that adrenalectomy impaired the gluconeogenic action of glucagon in livers of fasted rats at the level of regulation of 6-phosphofructo-1-kinase and/or fructose 2,6-bisphosphate content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号