首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
To determine the contribution of IL-1beta, tumor necrosis factor alpha (TNF-alpha) and IL-17 to AP-1, NF-kappaB and Egr-1 activation in rheumatoid arthritis, the effect of the cytokines used alone or in combination was measured on TF expression in rheumatoid synoviocytes. Effects on mRNA expression were measured by RT-PCR and effects on nuclear translocation were measured by immunocytochemistry. To assess the functional consequences of cytokine induction, osteoprotegerin levels were measured in synoviocyte supernatants.IL-1beta and TNF-alpha alone at optimal concentration (100 pg/ml) induced the nuclear translocation of NF-kappaB and almost all AP-1 members, except JunB and Egr-1 for IL-1beta and except Fra-2 and Egr-1 for TNF-alpha. IL-17 was clearly less potent since no nuclear translocation was observed, except for a weak activation of Fra-1 and NF-kappaB. More importantly, when these cytokines were used at low concentrations, their combination showed a synergistic effect on almost all the TFs, except for Egr-1, with a particular effect on Fra-1 and NF-kappaB. Increased recruitment of additional factors was induced when the three cytokines were combined. IL-1 and TNF-alpha induced mRNA expression of c-jun while IL-17 had no effect. A synergistic effect was seen with their combination. A similar synergistic effect was observed for osteoprotegerin production when these three cytokines were combined at low concentrations.AP-1 and NF-kappaB pathways were highly sensitive to the combination through synergistic mechanisms. These effects observed in rheumatoid arthritis synoviocytes may reflect the conditions found in the rheumatoid arthritis joint and may contribute to the mode of action of cytokine inhibitors.  相似文献   

5.
6.
7.
IL-1 is well known to be involved in the immune system and have a role in ovarian inflammation as well as exhibiting inhibitory effects on steroidogenesis and folliculogenesis. Because multiple aspects of ovarian function have also been shown to involve cytokine/chemokine networks, IL-1alpha-induced chemokine gene expression in mouse granulosa cells was investigated. Granulosa cells from immature mice at 28 d of age were cultured with IL-1alpha (10 ng/ml). IL-1alpha induced abundantly and specifically keratinocyte chemoattractant (KC) chemokine, a CXC subfamily. KC chemokine mRNA and protein were increased 1-2 h after IL-1alpha and then gradually decreased. The KC promoter (-701/+30) containing three nuclear factor (NF)-kappaB sites was fully responsive to IL-1alpha, whereas deletions and mutants of the NF-kappaB sites lowered the responsiveness to IL-1alpha. The proximal NF-kappaB site (-69/-59) played a critical role in regulating IL-1alpha-induced KC chemokine promoter activity. Overexpression of the inhibitor of NF-kappaB (IkappaB) blocked KC promoter activity induced by IL-1alpha, whereas overexpression of p65, a component of NF-kappaB, increased promoter activity and mRNA of KC chemokine. In addition, FSH did not affect NF-kappaB signaling or IL-1alpha-induced KC chemokine promoter activity. Within 1-3 h after ip injection of lipopolysaccharide (100 mug/mouse), a product known to stimulate release of IL-1, KC chemokine was localized in the ovary to granulosa cells as well as the thecal-interstitial layer. The results of this study indicate that KC gene is a chemokine induced acutely by IL-1alpha via NF-kappaB signaling in mouse granulosa cells.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Cyclooxygenase-2 (COX-2) and tyrosine kinase, which are involved in the biosynthesis of prostaglandin E(2) (PGE(2)) in mouse calvarial osteoblasts, are stimulated by cytokine interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and/or interleukin-6 (IL-6). IL-1beta and IL-6 and, to a lesser extent, TNF-alpha, enhances COX-2 mRNA levels in calvarial osteoblasts. Simultaneous treatment with IL-6 and IL-1beta and TNF-alpha resulted in enhanced COX-2 mRNA levels accompanied by the cooperative stimulation of PGE(2) biosynthesis compared to cells treated with IL-1beta or TNF-alpha or IL-6 alone. In contrast, the presence of TGF-beta reduced COX-2 mRNA level, PGE(2) biosynthesis and bone resorption induced by IL-1beta, TNF-alpha, IL-6 or a combination thereof. However, neither IL-1beta, TNF-alpha, IL-6 nor a combination of IL-1beta, TNF-alpha, IL-6 enhanced COX-1 mRNA levels in calvarial osteoblasts. A novel Src tyrosine kinase inhibitor, Herbimycin A (HERB), reduced COX-2 mRNA levels as well as PGE(2) production induced by IL-1beta, TNF-alpha and IL-6 or a combination of IL-1beta, TNF-alpha, IL-6, whereas COX-1 mRNA levels remained unaffected. Finally, HERB was found to inhibit in vitro bone resorption. These results indicate that the cooperative effects of IL-beta, TNF-alpha, IL-6 on PGE(2) production are due to the enhanced expression of the COX-2 gene and that tyrosine kinase(s) are involved in COX-2 signal transduction in mouse calvarial osteoblasts. Thus, the Src family of kinase inhibitors may be useful in treating diseases associated with elevated bone loss.  相似文献   

19.
Although well recognized for its anti-inflammatory effect on gene expression in stimulated monocytes and macrophages, IL-4 is a pleiotropic cytokine that has also been shown to enhance TNF-alpha and IL-12 production in response to stimulation with LPS. In the present study we expand these prior studies in three areas. First, the potentiating effect of IL-4 pretreatment is both stimulus and gene selective. Pretreatment of mouse macrophages with IL-4 for a minimum of 6 h produces a 2- to 4-fold enhancement of LPS-induced expression of several cytokines and chemokines, including TNF-alpha, IL-1alpha, macrophage-inflammatory protein-2, and KC, but inhibits the production of IL-12p40. In addition, the production of TNF-alpha by macrophages stimulated with IFN-gamma and IL-2 is inhibited by IL-4 pretreatment, while responses to both LPS and dsRNA are enhanced. Second, the ability of IL-4 to potentiate LPS-stimulated cytokine production appears to require new IL-4-stimulated gene expression, because it is time dependent, requires the activation of STAT6, and is blocked by the reversible protein synthesis inhibitor cycloheximide during the IL-4 pretreatment period. Finally, IL-4-mediated potentiation of TNF-alpha production involves specific enhancement of mRNA translation. Although TNF-alpha protein is increased in IL-4-pretreated cells, the level of mRNA remains unchanged. Furthermore, LPS-stimulated TNF-alpha mRNA is selectively enriched in actively translating large polyribosomes in IL-4-pretreated cells compared with cells stimulated with LPS alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号