首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
Kin recognition in Bufo scaber tadpoles: ontogenetic changes and mechanism   总被引:1,自引:0,他引:1  
Ontogenetic changes in kin-recognition behavior, effect of social environment on kin-recognition ability, and use of visual and chemical cues in kin recognition have been studied in tadpoles of Bufo scaber after rearing them with kin, in mixed groups, or in isolation from Gosner stage 12 (gastrula). By use of a rectangular choice tank the tadpoles were tested for their ability to choose between (a) familiar siblings and unfamiliar non-siblings, (b) unfamiliar siblings and familiar non-siblings, and (c) unfamiliar siblings and unfamiliar non-siblings. When tested without any stimulus groups in the end compartments of the tank, random distribution was observed for the tadpoles and no bias for the apparatus or the procedure. In the presence of kin and non-kin in the end compartments, significantly more tadpoles spent most of their time near kin (familiar or unfamiliar) rather than near non-kin during early larval stages, up to stage 37. After stage 37 (characterized by the differentiation of toes), test tadpoles showed no preference to associate with kin, suggesting an ontogenetic shift in the kin-recognition ability in B. scaber. In experiments involving selective blockade of visual or chemical cues the test tadpoles preferentially associated near their kin on the basis of chemical rather than visual cues. These findings suggest that familiarity with siblings is not necessary for kin recognition and that kin-recognition ability is not modified after exposure to non-kin by mixed rearing. The findings for B. scaber indicate a self referent phenotype matching mechanism of kin recognition which is predominantly aided by chemical rather than visual cues.  相似文献   

2.
The ability of bronze frogRana temporalis tadpoles (pure or mixed parental lines) to assess the profitability of food habitats and distribute themselves accordingly was tested experimentally using a rectangular choice tank with a non-continuous input design. Food (boiled spinach) was placed at two opposite ends of the choice tank in a desired ratio (1:1, 1:2 or 1:4) to create habitat A and B. The tadpoles in Gosner stage 28–33, pre-starved for 24 h, were introduced in an open ended mesh cylinder placed in the center of the choice tank, held for 4 min (for acclimation) and then released to allow free movement and habitat selection. The number of tadpoles foraging at each habitat was recorded at 10, 15, 20, 25 and 30 min time intervals. The actual suitability,S i (the food available in a habitat after colonization of tadpoles) of each habitat was obtained from the equationS i =B if i (d i) whereB i is basic suitability (amount of food provided at each habitat before release of tadpoles),f i is the rate of depletion of food (lowering effect) with introduction of each tadpole, andd i is the density of tadpoles in habitati. The expected number of tadpoles at each habitat was derived from the actual suitability. With no food in the choice tank, movement of the tadpoles in the test arena was random indicating no bias towards any end of the choice tank or the procedure. In tests with a 1:1 food ratio, the observed ratio of tadpoles (11.71: 12.28) was comparable with the expected 12:12 ratio. The observed number of tadpoles in the habitats with a 1:2 food ratio was 8.71:15.29 and 7.87:16.13 for pure and mixed parental lines respectively. In both cases, the observed ratios were close to the expected values (7:17). Likewise, in experiments with a 1:4 food ratio, the observed number of tadpoles in the two habitats (10.78:37.22) did not differ significantly from the expected ratio of 7:41. In all tests, the number ofR. temporalis tadpoles matched ideally with habitat profitability (undermatching indexK ≜ 1. The study shows that tadpoles of the bronze frog exhibit an ideal free distribution while foraging regardless of whether they are siblings or non-siblings in a group, which correlates well with their group living strategy in nature.  相似文献   

3.
The ontogeny of kin recognition and influence of social environment on the development of kin recognition behaviour was experimentally investigated in tadpoles of Bufo melanostictus that lived in aggregations and showed low larval dispersion. Embryos and tadpoles of the toad were reared as (i) kin only, (ii) with kin and non-kin (separated by a mesh screen), and (iii) in isolation. They were tested for the ability to discriminate between (i) familiar siblings and unfamiliar non-siblings, (ii) familiar siblings and familiar non-siblings and, (iii) unfamiliar siblings and unfamiliar non-siblings. All tadpoles were fed on boiled spinach before conducting trials. Preference of test tadpoles to associate near the end compartments whether empty or containing members of specific stimulus groups was assessed using a rectangular choice tank. When tested in tanks with empty end compartments, the test tadpoles showed random distribution and thus no bias for the apparatus or the procedure. In the presence of kin/non-kin in the end compartments a significantly greater number of test tadpoles spent the majority of the time near familiar or unfamiliar kin rather than near familiar or unfamiliar non-kin. Kin discrimination ability persisted throughout larval development. Familiarity with siblings is not required for discriminating kin from non-kin, and kin discrimination ability is not modified following exposure to non-kin. Also, involvement of dietary cues is unlikely to be the prime mechanism of kin recognition inB. melanostictus unlike in some other anurans.  相似文献   

4.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

5.
Tadpoles of Sphaerotheca breviceps raised in the laboratory from the egg stage, and hence lacking prior experience of a predator or its odors, were tested to examine their responses to a predator’s (tadpoles of Hoplobatrachus tigerinus) water-borne chemical cues. The stimulus solution was obtained following 24 h of rearing tadpoles of H. tigerinus (one tadpole per 200 mL water) that were not fed during this period. Upon exposure to the stimulus solution the activity of S. breviceps tadpoles decreased by about 90% within 5 min. Their resting period increased significantly over baseline activity, whereas the swimming period, distance traversed, and swimming spurts declined. However, whenever a test tadpole moved, its swimming velocity was high in response to stimulus solution. The antipredatory responses declined with increase in time of storage of the stimulus solution, indicating decay of the predator’s chemical cues. The findings suggest that (1) antipredator defense strategies of S. breviceps do not require prior experience of predators, (2) the predator’s chemical cues are labile in nature, and (3) the response of prey tadpoles to such cues is similar to reported behavior of anuran tadpoles in response to real predators and alarm cues.  相似文献   

6.
Summary Freshwater snails and anuran tadpoles have been suggested to have their highest population densities in ponds of intermediate size where abiotic disturbance (e.g. desiccation) is low and large predators absent. Both snails and tadpoles feed on periphytic algae and, thus, there should be a large potential for competitive interactions to occur between these two distantly related taxa. In a field experiment we examined the relative strength of competition between two closely related snail species, Lymnaea stagnalis and L. peregra, and between L. stagnalis and tadpoles of the common frog, Rana temporaria. Snail growth and egg production and tadpole size at and time to metamorphosis were determined. Effects on the common food source, periphyton, were monitored with the aid of artificial substrates. Periphyton dry weight was dramatically reduced in the presence of snails and/or tadpoles. There were no competitive effects on growth or egg production of the two snail species when they were coexisting. Mortality of L. peregra was high (95%) after reproduction, but independent of treatment. Growth of L. stagnalis was reduced only at the highest tadpole densities, whereas egg production was reduced both by intraspecific competition and by competition with tadpoles. Differences in egg production were retained after tadpole metamorphosis. Tadpole larval period increased, weight of metamorphosing frogs decreased and growth rate was reduced as a function of increasing tadpole density. However, contrary to expectation, snails had a positive effect on tadpole larval period, weight and growth rate. Further, in experimental containers without snails there was a dense growth of the filamentous green alga Cladophora sp. We suggest that the facilitative effects of snails on tadpoles are due to an indirect mutualistic mechanism, involving competition between food sources of different quality (microalgae and Cladophora sp.) and tadpoles being competitively dominant over snails for the preferred food source (microalgae). In the presence of tadpoles snails will be forced to feed on low-quality Cladophora, increasing nutrient turnover rates, which results in enhanced productivity of microalgae, increasing tadpole food resources. Thus, tadpoles have a negative effect on snails through resource depression, while snails facilitate tadpole growth through an indirect enhancement of food availability.  相似文献   

7.
8.
Prereproductive adults of the grasshopper, Melanoplus sanguinipes (F.) (Orthoptera, Acrididae), demonstrated orientation and movement towards both visual and olfactory stimulus sources in a still-air chamber. Visual stimuli (wheat and lima bean foliage, vertical black or yellow-green stripes, and a yellow-green broad leaf pattern) were approached more frequently than the control white background surface. Olfactory stimuli (chopped wheat foliage and a four-component, synthetic, grass odor blend of volatiles) elicited an even greater positive response than the visual stimuli. Changing the proportions of the four volatiles in the blend significantly reduced positive orientation responses to the stimulus source. Visual cues of wheat foliage and olfactory cues of either chopped wheat odor or the grass odor blend gave greater responses when combined than when presented separately.In flowing air or wind, nearly all insects demonstrated a rapid positive response to odors of chopped wheat and the grass odor blend, significantly greater than the response to the same stimuli in still air. However, positive responses to visual cues were not significantly greater in wind than in still air. When combined with the olfactory stimuli in flowing air, visual cues did not increase the incidence of response. Grasshoppers responding to grass odors in wind moved more rapidly and directly toward the source, and stopped less often and for shorter durations than insects responding to odor in still air or to visual cues.We conclude from these studies that M. sanguinipes adults show orientation behavior to both visual and olfactory stimuli from food plant sources, although leaf odors elicit a stronger positive response particularly when carried by wind.  相似文献   

9.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   

10.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

11.
The ability of prey to detect predators directly affects their probability of survival. Chemical cues are known to be important for predator detection in aquatic environments, but the role of other potential cues is controversial. We tested for changes in behaviour of Rana temporaria tadpoles in response to chemical, visual, acoustic, and hydraulic cues originating from dragonfly larvae (Aeshna cyanea) and fish (Gasterosteus aculeatus). The greatest reduction in tadpole activity occurred when all cues were available, but activity was also significantly reduced by visual cues only. We did not find evidence for tadpoles lowering their activity in response to acoustic and hydraulic cues. There was no spatial avoidance of predators in our small experimental containers. The results show that anuran larvae indeed use vision for predator detection, while acoustic and hydraulic cues may be less important. Future studies of predator‐induced responses of tadpoles should not only concentrate on chemical cues but also consider visual stimuli. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

12.
Many species possess damage-released chemical alarm cues that function in alerting nearby individuals to a predator attack. One hypothesis for the evolution and/or maintenance of such cues is the Predator Attraction Hypothesis, where predators, rather than prey, are the “intended” recipients of these cues. If a predator attack attracts additional predators, these secondary predators might interfere with the predation event, providing the prey with a better chance to escape. In this study, we conducted two experiments to explore this hypothesis in an amphibian predator/prey system. In Experiment 1, we found that tiger salamanders (Ambystoma mavortium) showed a foraging attraction to chemical cues from wood frog (Lithobates sylvaticus) tadpoles. Salamanders that were experienced with tadpole prey, in particular, were strongly attracted to tadpole alarm cues. In Experiment 2, we observed experimental encounters between a tadpole and either one or two salamanders. The presence of the second predator caused salamanders to increase attack speed at the cost of decreased attack accuracy (i.e., increasing the probability that the tadpole would escape attacks). We also found that the mere presence of visual and chemical cues from a second predator did not affect this speed/accuracy trade-off but did cause enough of a distraction to increase tadpole survival. Thus, our findings are consistent with the Predator Attraction Hypothesis for the evolution and/or maintenance of alarm cues.  相似文献   

13.
Abstract Larvae of many anuran taxa display strong behavioural responses to chemical cues, including alarm signals from injured conspecific tadpoles. We exposed tadpoles and metamorphs from an Australian population of the invasive cane toad (Chaunus[Bufo] marinus) to a range of chemical stimuli and quantified their responses both in the laboratory and in the field. Filtered fluids containing scent cues from crushed conspecifics elicited strong avoidance from tadpoles, whereas other cues (e.g. scent of food, of native‐range fish or urodele predators, and thermal stimuli) did not. Apparent aggregation of tadpoles in response to scent cues proved to be an artifact of tank design, and was an indirect consequence of avoidance of those cues. Field trials confirmed that free‐ranging toad tadpoles and metamorphs avoided chemical cues from crushed conspecifics, suggesting that the chemicals inducing this response might provide an opportunity to develop targeted control methods for this invasive species.  相似文献   

14.
We have investigated behavioral responses of Rana arvalis Nilss. tadpoles to water carrying various water-soluble chemical stimuli: natural lake water; dechlorinated tap water; water in which tadpoles were kept; water with chemical characteristics of the jellylike remains of their own or other clutches after tadpole hatching; boiled nettle, which was used as food for laboratory animals; and water containing toxins of the skin glands of the common toad Bufo bufo L. The preference for natural water over the tap water was revealed, as well as the fact that naive tadpoles were attracted by the “smell” of nettles and tried to avoid toxins.  相似文献   

15.
In experiments with specially designed choice tanks, tadpoles of Bufo melanostictus spend significantly greater amounts of time near kin than near non-kin. However, in the absence of kin members, they prefer to spend more time near non-kin rather than stay away in isolation in the opposite blank zone with no company. This implies that association of toad tadpoles with their kin is due to attraction rather than repulsion from non-kin. Experiments designed to elucidate the sensory basis of kin recognition showed that toad tadpoles recognize their kin based on chemical cues rather than visual cues. They can also discriminate between homospecific non-kin and heterospecific (Sphaerotheca breviceps) tadpoles since the tadpoles spent significantly greater amounts of time near the former than near the latter. These findings suggest that where kin members are unavailable, selection may have favoured living with non-kin so as to derive benefits from group living and that a phenotype-matching mechanism may operate for both kin and species discrimination in B. melanostictus.  相似文献   

16.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

17.
Tadpoles of the cane toad (Rhinella marina) form dense aggregations in the field, but the proximate cues eliciting this behavior are not well understood. We sampled water‐bodies in the Northern Territory of Australia, finding that the density of cane toad tadpoles increased with increasing temperature. Furthermore, we conducted laboratory experiments to explore the roles of biotic factors (attraction to conspecifics; chemical cues from an injured conspecific; food) and spatially heterogeneous abiotic factors (light levels, water depth, physical structure) to identify the cues that induce tadpole aggregation. Annulus and binary choice trials demonstrated weak but significant attraction between conspecifics. Tadpoles decreased swimming speeds, but did not increase grouping in response to cues from an injured conspecific. Larvae aggregated in response to abiotic cues (high levels of illumination and proximity to physical structures) and were strongly attracted to feeding conspecifics. Overall, aggregation by cane toad tadpoles is likely driven by weak social attraction coupled with a shared preference for specific abiotic features, creating loose aggregations that are then reinforced by movement toward feeding conspecifics.  相似文献   

18.
19.
We studied the effects of predatory crayfish ( Pacifastacus leniusculus ), the non-lethal effects of fish chemical cues ( Oncorhynchus mykiss ), and the combined effects of crayfish and fish chemical cues on the performance of tadpoles of two co-existing anuran species, Rana temporaria and Bufo bufo , in experimental pools. We also examined grazing effects on periphyton, the main food source for the tadpoles. Crayfish significantly reduced tadpole survival, particularly by feeding on Bufo . Rana benefited from reduced numbers of competitors, resulting from crayfish predation, by increased growth rate, whereas the growth rate of Bufo was unaffected by crayfish. The proportion of Rana in refuges (in relation to the number of survivors at the end of the experiment) was unaffected by crayfish, whereas proportionally more Bufo stayed in refuges in the presence of crayfish, relative to controls. Fish cues had no effect on tadpole survival of either species. During the entire larval period, Rana responded to fish cues by increasing the use of refuges relative to controls, whereas Bufo did not show any significant behavioural response to fish cues. In accordance with these observations, the proportion of Rana in refuges at the end of the experiment was high in the presence of fish cues, whereas the use of refuges by Bufo was not affected by fish cues. Predatory crayfish and fish chemical cues had additive effects on tadpole survival, growth and refuge use. Tadpoles in all treatments reduced periphyton biomass. Both crayfish and fish cues had positive indirect effects on periphyton biomass. The positive indirect effect of fish cues on periphyton was likely an effect of reduced grazing from Rana . Thus lethal, as well as non-lethal, predator effects on prey populations can influence lower trophic levels.  相似文献   

20.
A culture system for the rotifer Brachionus plicatilis was designed to maintain higher food conversion rates and stable population densities. Two 2001 plastic tanks were employed in the culture experiments, tank A for feedback culture and tank B for a control culture. The experiments were carried out for 70 days at 24 °C, light intensity, 1500 lux, and a photoperiod of L:D 15:9. B. plicatilis were fed once a day on baker's yeast and Chlorella.Food conversion rates in tanks A and B were 24.7% and 10.1%, respectively. Population density of B. plicatilis in tank A was consistently stable at 100–150 ind. ml–1 throughout the culture period. Density in tank B, however, showed large fluctuations after 40 or 50 days and by the end of the experiment, declined to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号