首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glabridin is the main ingredient in hydrophobia fraction of licorice extract affecting on skins. In this study, we investigated inhibitory effects of glabridin on melanogenesis and inflammation using cultured B16 murine melanoma cells and guinea pig skins. The results indicated that glabridin inhibits tyrosinase activity of these cells at concentrations of 0.1 to 1.0 μg/ml and had no detectable effect on their DNA synthesis. Combined analysis of SDS-polyacrylamide gel electrophoresis and DOPA staining on the large granule fraction of these cells disclosed that glabridin decreased specifically the activities of Tl and T3 tyrosinase isozymes. It was also shown that UVB-induced pigmentation and erythema in the skins of guinea pigs were inhibited by topical applications of 0.5% glabridin. Anti-inflammatory effects of glabridin in vitro were also shown by its inhibition of superoxide anion productions and cyclooxygenase activities. These data indicated that glabridin is a unique compound possessing more than one function; not only the inhibition of melanogenesis but also the inhibition of inflammation in the skins. By replacing each of hydroxyl groups of glabridin with others, it was revealed that the inhibitory effect of 2′-O-ethyl glabridin was significantly stronger than that of 4′-O-ethyl-glabridin on melanin synthesis in cultured B16 cells at the concentration of 1.0 mg/inl. With replacement of both of two hydroxyl groups, the inhibitory effect was totally lost. Based on these data, we concluded that two hydroxyl groups of glabridin are important for the inhibition of melanin synthesis and that the hydroxyl group at the 4’ position of this compound is more closely related to melanin synthesis.  相似文献   

2.
Cell proliferation of vascular cells is a key feature in vascular biology, wound healing, and pathophysiological processes such as atherosclerosis and restenosis. In atherosclerotic intima, cell proliferation colocalizes with oxidized LDL that indicate a local oxidative stress. This study aims to investigate whether cell proliferation is causally related with extracellular ROS generation and subsequent LDL oxidation. Sparse proliferating endothelial and smooth muscle cells generate higher levels of extracellular ROS (O2 and H2O2) and LDL oxidation than confluent contact-inhibited cells. During wound healing of confluent cell layer, cell proliferation associated with healing also induced enhanced extracellular ROS generation and LDL oxidation. Proliferation-associated extracellular ROS generation is mediated through mitogenic signaling pathways, involving ERK1/2 and PKC, but is independent of de novo DNA synthesis, gene expression and protein synthesis. Data obtained with inhibitors of oxidases suggest that proliferation-associated extracellular ROS are not generated by a single ROS-generating system and are not essential for cell proliferation. In conclusion, our data show that proliferating vascular cells (in sparse culture or during wound healing) generate high levels of extracellular ROS and LDL oxidation through regulation of ROS-generating systems by mitogenic signaling. This constitutes a link between proliferative events and oxidative stress/LDL oxidation in atherosclerotic lesions and restenosis.  相似文献   

3.
Low-density lipoprotein (LDL) oxidation is the primary event in atherosclerosis, and LDL lipoperoxidation leads to modifications in apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno-spin trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 min. In contrast, the yields of apo B-100 radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate, and Trolox dose-dependently reduced apo B-100 free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans.  相似文献   

4.
The first reports of the influences of oxidized LDL (oxLDL) on cell function pertained to negative effects on cell growth—growth arrest, injury, and toxicity. Since these studies, it has become apparent that sublethal levels of oxLDL cause some, but not all, cells to proliferate. This review highlights the growth-promoting effects of oxLDL rather than its inhibitory or injurious effects. Smooth muscle cells (SMCs) and monocyte-macrophages proliferate after exposure to oxLDL; endothelial cells do not. Scavenger receptors are involved in the proliferative effects on monocyte-macrophages, whereas the effects of oxLDL on SMCs appear to be receptor independent. Lysophosphatidylcholine (lysoPC), and structurally related lipids are among the growth-promoting constituents of oxLDL. OxLDL exerts at least a part of its effects by inducing expression or causing the release of growth factors. OxLDL (or lysoPC) can cause the release of basic fibroblast growth factor (bFGF) from SMCs; oxLDL (or lysoPC) can induce heparin binding EGF-like growth factor (HB-EGF) synthesis and release from macrophages. An imposing array of changes in cytokine and growth factor expression and/or release can be imposed by oxLDL on a wide variety of cell types. These effects and the studies probing the cell signaling events leading to them are described.  相似文献   

5.
应用经PMA诱导衍生的THP-1巨噬细胞为模型,以单克隆抗体C7B封闭oxLDL上的LDL受体结合位点,结果发现,正常细胞在摄取oxLDL时LDL受体与清道夫受体起协同作用;但C7B作用于蓄积了脂质的THP-1巨噬细胞时,对细胞脂质蓄积程度无明显影响,清道夫受体活性不但不降低反而有所升高,说明由于脂质蓄积LDL受体的作用减弱.  相似文献   

6.
The oxidative modification hypothesis of atherogenesis: an overview   总被引:24,自引:0,他引:24  
The literature relating lipid and lipoprotein oxidation to atherosclerosis has expanded enormously in recent years. Papers on the “oxidative modification hypothesis” of atherogenesis have ranged from the most basic studies of the chemistry and enzymology of LDL oxidation, through studies of the biological effects of oxidized LDL on cultured cells, and on to in vivo studies of the effects of antioxidants on atherosclerosis in animals and humans. The data in support of this theory are mounting but many key questions remain unanswered. For example, while it is generally agreed that LDL undergoes oxidation and that oxidized LDL is present in arterial lesions, it is still not known how and where LDL gets oxidized in vivo nor which of its many biological effects demonstrable in vitro are relevant to atherogenesis in vivo. This brief review is not intended to be comprehensive but rather to offer a perspective and a context for this Forum. We discuss the strengths and weaknesses of each line of evidence, try to identify areas in which further research is needed, assess the relevance of the hypothesis to the human disease, and point to some of the potential targets for therapy.  相似文献   

7.
Ultraviolet radiation is the main cause of skin cancers, and melanoma is the most serious form of tumor. There is no therapy for advanced-stage melanoma and its metastasis because of their high resistance to various anticancer therapies. Human skin is an important metabolic organ in which occurs photoinduced synthesis of vitamin D3 from 7-dehydrocholesterol (7-DHC). 7-DHC, the precursor of cholesterol biosynthesis, is highly reactive and easily modifiable to produce 7-DHC-derived compounds. The intracellular levels of 7-DHC or its derivatives can have deleterious effects on cellular functionality and viability. In this study we evaluated the effects on melanoma cell lines of 7-DHC as such and for this aim we used much care to minimize 7-DHC modifications. We found that from 12 to 72 h of treatment 82–86% of 7-DHC entered the cells, and the levels of 7-DHC-derived compounds were not significant. Simultaneously, reactive oxygen species production was significantly increased already after 2 h. After 24 h and up to 72 h, 7-DHC-treated melanoma cells showed a reduction in cell growth and viability. The cytotoxic effect of 7-DHC was associated with an increase in Bax levels, decrease in Bcl-2/Bax ratio, reduction of mitochondrial membrane potential, increase in apoptosis-inducing factor levels, unchanged caspase-3 activity, and absence of cleavage of PARP-1. These findings could explain the mechanism through which 7-DHC exerts its cytotoxic effects. This is the first report in which the biological effects found in melanoma cells are mainly attributable to 7-DHC as such.  相似文献   

8.
《Free radical research》2013,47(12):1319-1330
Paraoxonase1 (PON1), one of antioxidant proteins to protect low density lipoprotein (LDL) from the oxidation, is known to lose its activity in the oxidative environment. Here, we attempted to elucidate the possible mechanisms for the oxidative inactivation of PON1, and to examine the capability of hydroxyl radicals-inactivated PON1 to prevent against LDL oxidation. Of various oxidative systems, the ascorbate/Cu2+ system was the most potent in inactivating the purified PON1 (PON1) as well as HDL-bound PON1 (HDL-PON1). In contrast to a limited inactivation by Fe2+ (2.0?μM), the inclusion of Cu2+ (0.1–1.0?μM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.5?mM). A similar result was also obtained with the inactivation of HDL-PON1. The inactivation of PON1 by ascorbate/Cu2+ was pevented by catalase, but not general hydroxyl radical scavengers, supporting Cu2+-catalyzed oxidative inactivation. In addition, Cu2+ alone inactivated PON1, either soluble or HDL-bound, by different mechanisms, concentration-dependent. Separately, there was a reverse relationship between the inactivation of PON1 and its preventive action against LDL oxidation during Cu2+-induced oxidation of LDL. Noteworthy, ascorbate/Cu2+-inactivated PON1, which was charaterized by the partial loss of histidine residues, expressed a lower protection against Cu2+-induced LDL oxidation, compared to native PON1. Based on these results, it is proposed that metal-catalyzed oxidation may be a primary factor to cause the decrease of HDL-associated PON1 activity under oxidative stress, and radicals-induced inactivation of PON1 may lead to the decrease in its antioxidant action against LDL oxidation.  相似文献   

9.
The effect of felodipine on lipoprotein metabolism ex vivo and in vivo was investigated. In the ex vivo studies mice were given felodipine (40–125 μ mol/kg body weight) or vehicle for one week. Peritoneal macrophages from these animals and controls were isolated and used in binding and degradation studies with human iodinated acetylated LDL (Ac-LDL). Macrophages from felodipine-treated mice showed a significant decrease of binding and degradation of Ac-LDL compared to macrophages from control animals (P<0.05). The in vivo studies were performed in rats pretreated with felodipine or vehicle. To determine the distribution and plasma turnover of LDL and Ac-LDL, 125I-tyramine cellobiose labelled LDL or Ac-LDL were given i.v. No differences in the removal rate of Ac-LDL or LDL were observed between felodipine-treated or untreated rats. However, an increased uptake of Ac-LDL could be seen in the liver of the felodipine-treated rats. This increased uptake could be ascribed to the parenchymal cells because no differences in uptake could be seen in the liver endothelial cells. However, a significant decreased uptake was seen in the Kuppfer cells and in the spleen, a macrophage-rich organ, of the felodipine-treated rats. The present study suggests a possible mechanism behind the antiatherogenic effects of calcium antagonists, a decreased uptake of atherogenic modified lipoproteins by peripheral macrophages and an increased uptake by the liver.  相似文献   

10.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   

11.
Summary.  We studied the role of the D-amino acids (D-aa) D-serine, D-alanine, D-methionine, D-aspartate, D-tyrosine and D-arginine on rat liver mitochondria. The stability of D-amino acids, mitochondrial swelling, transmembrane potential and oxygen consumption were studied under oxidative stress conditions in rat liver mitochondria. In the presence of glutamate-malate all D-aas salts increased mitochondrial swelling, while in the presence of succinate plus rotenone only D-ala, D-arg and D-ser, induced mitochondrial swelling. The transmembrane potential (ΔΨ) was decreased in the presence of 1 μM Ca2+. The D-aas inhibited oxygen consumption in state 3. The D-aa studied exerted effects on mitochondria via an increase of free radicals production. Received January 15, 2002 Accepted April 14, 2002 Published online September 4, 2002 Acknowledgements The authors appreciated the partial economical support from Mexican grants of CONACYT (to A.S.-M. during its sabbatical) and CIC-UMSNH (2.5) and critical readings from Rafael álvarez-González. Authors' address: Alfredo Saavedra-Molina, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3. C.U., Morelia, Mich. 58030. México, Fax: 52-443-326-5788, E-mail: saavedra@zeus.umich.mx  相似文献   

12.
Paraoxonase 1 (PON1) activity is consistently predictive of vascular disease, although the genotype at four functional PON1 polymorphisms is not. To address this inconsistency, we investigated the role of all common PON1 genetic variability, as measured by tagging single-nucleotide polymorphisms (tagSNPs), in predicting PON1 activity for phenylacetate hydrolysis, LDL susceptibility to oxidation ex vivo, plasma homocysteine (Hcy) levels, and carotid artery disease (CAAD) status. The biological goal was to establish whether additional common genetic variation beyond consideration of the four known functional SNPs improves prediction of these phenotypes. PON2 and PON3 tagSNPs were secondarily evaluated. Expanded analysis of an additional 26 tagSNPs found evidence of previously undescribed common PON1 polymorphisms that affect PON1 activity independently of the four known functional SNPs. PON1 activity was not significantly correlated with LDL oxidative susceptibility, but genotypes at the PON1(-108) promoter polymorphism and several other PON1 SNPs were. Neither PON1 activity nor PON1 genotype was significantly correlated with plasma Hcy levels. This study revealed previously undetected common functional PON1 polymorphisms that explain 4% of PON1 activity and a high rate of recombination in PON1, but the sum of the common PON1 locus variation does not explain the relationship between PON1 activity and CAAD.  相似文献   

13.
Effect of Reactive Oxygen Species on Myelin Membrane Proteins   总被引:5,自引:0,他引:5  
Fresh myelin, isolated from brainstems of adult rats, was incubated in the presence of Cu2+ and H2O2. Electrophoretic analysis of the reisolated myelin membrane revealed a gradual loss of the protein moiety from the characteristic pattern and an increase in aggregated material appearing at the origin of the gel. The aggregation of proteins was time-dependent and was concomitant with the accumulation of lipid peroxidation products reactive with thiobarbituric acid. Furthermore, during the course of incubation, there was a gradual decrease in the amount of recovered light myelin and a quantitatively similar increase in heavier myelin subfractions. The aggregation of proteins seems not to be directly related to the buoyant densities of myelin fragments. The peroxidative damage to the myelin proteins may be an important contributor to pathochemistry of myelin sheath, in particular, and in general it implies the susceptibility of the protein moiety of cell membranes to oxygen-induced deterioration.  相似文献   

14.
Lactobacillus delbrueckii subsp. bulgaricus 2038 was examined for its activity to prevent the oxidation of the erythrocyte membrane in vitro, and the oxidation of LDL in vivo.

Strain 2038 produced radical scavengers that reacted with 1,1-diphenyl-2-picrylhydrazl (DPPH) during cultivation. Moreover, the ethereal extract from the supernatant of the culture prevented the oxidation of the erythrocyte membrane in vitro.

As an in vivo study, male F344 rats were fed on diets containing 20% fresh soybean oil (or 13% oxidized oil and 7% fresh oil) with 10% freeze-dried powder of the 2038 culture (or with skim milk powder) for 4 weeks. The level of thiobarbituric acid-reactive substances was lower in the low-density lipoproteins (per milligram of cholesterol) from rats fed on the oxidized oil with freeze-dried powder of the 2038 culture than without it. The level of vitamin E in the plasma was higher in the rats fed on the oxidized oil with the freeze-dried powder than without it.  相似文献   

15.
Diabetic patients have elevated levels of glucose in their blood and other body fluids. This project studied the effect of high-glucose concentrations (HG) on the protein oxidation in cultured lens cells and in crystalline protein solution. In addition, we also examined the effect of HG on the oxidation and turbidity (aggregation) of albumin protein solution. This study also examined whether vitamin B6 [pyridoxine (P), pyridoxamine (PM)] or n-acetylcysteine (NAC) is capable of preventing protein oxidation similar to that seen in cataracts. For cell culture studies, rabbit lens cells were cultured in control or HG medium at 37°C for 2 d. For studies with protein solution, a buffered solution of serum albumin or crystalline protein was incubated with normal glucose (5 mM) or HG (50–100 mM) in a water bath at 37°C for 4 d. All treatments were carried out with and without the addition of P, PM, or NAC. We found significantly higher levels of carbonyl protein (an index of protein oxidation) in HG-treated compared with normal glucose-treated lens cells and in crystalline protein solution. P, PM, and NAC significantly decreased the protein oxidation in lens cells and crystalline protein solution. We also found significantly higher levels of protein oxidation and turbidity (an index of protein aggregation) and its inhibition by P, PM, and NAC in HG-treated compared with normal glucose-treated albumin solution. This suggests that HG can cause the oxidation and modification of proteins in the lens, and that vitamin B6 and NAC supplementation may be helpful in slowing the oxidation of lens proteins. This study explains the cause of early cataract development and the potential benefit of supplementation with vitamin B6 and NAC in the prevention of the development of cataract among the diabetic population.  相似文献   

16.
In the present study, we investigated the mechanism of UV-B radiation induced damage to the light harvesting apparatus of the cyanobacterium Synechocystis 6803. Liquid chromatography analysis and spectroscopy investigations performed on phycobilisomes or isolated biliproteins irradiated with moderate UV-B intensity (1.3 W/m(2)) revealed rapid destruction of beta-phycocyanin and a slower damage of the other biliproteins, alpha-phycocyanin and both alpha and beta-allophycocyanin. EPR spin trapping measurements revealed that carbon centered adducts of the spin trap DMPO were formed. This evidence indicates that free radicals produced from bilins probably attack the polypeptide chain of protein inducing its degradation. Our results show that the bilin chromophore is the main target of UV-B irradiation, causing structural changes, which in turn induce reaction of the chromophore with atmospheric oxygen and lead to production of reactive radicals. Our results also demonstrate that beta-phycocyanin is the most affected biliprotein, probably due to the presence of two bilins as chromophore.  相似文献   

17.
The ability of eight structurally related naturally occurring flavonoids in inhibiting lipid peroxidation and mitochondrial membrane permeability transition (MMPT), as well as respiration and protein sulfhydryl oxidation in rat liver mitochondria, was evaluated. The flavonoids tested exhibited the following order of potency to inhibit ADP/Fe(II)-induced lipid peroxidation, estimated with the thiobarbituric acid assay: 3′-O-methyl-quercetin > quercetin > 3,5,7,3′,4′-penta-O-methyl-quercetin > 3,7,3′,4′-tetra-O-methyl-quercetin > pinobanksin > 7-O-methyl-pinocembrin > pinocembrin > 3-O-acyl-pinobanksin. MMPT was estimated by the extent of mitochondrial swelling induced by 10 μM CaCl2 plus 1.5 mM inorganic phosphate or 30 μM mefenamic acid. The most potent inhibitors of MMPT were quercetin, 7-O-methyl-pinocembrin, pinocembrin, and 3,5,7,3′,4′-penta-O-methyl-quercetin. The first two inhibited in parallel the oxidation of mitochondrial protein sulfhydryl involved in the MMPT mechanism. The most potent inhibitors of mitochondrial respiration were 7-O-methyl-pinocembrin, quercetin, and 3′-O-methyl-quercetin while the most potent uncouplers were pinocembrin and 3-O-acyl-pinobanksin. In contrast 3,7,3′,4′-tetra-O-methyl-quercetin and 3,5,7,3′,4′-penta-O-methyl-quercetin showed the lowest ability to affect mitochondrial respiration. We conclude that, in general, the flavonoids tested are able to inhibit lipid peroxidation on the mitochondrial membrane and/or MMPT. Multiple methylation of the hydroxyl substitutions, in addition to sustaining good anti-lipoperoxidant activity, reduces the effect of flavonoids on mitochondrial respiration, and therefore, increases the pharmacological potential of these compounds against pathological processes related to oxidative stress.  相似文献   

18.
本文用Cu~(2+)(引发氧化修饰)和脂质过氧化降解产物丙二醛(MDA)对低密度脂蛋白(LDL)进行修饰,观察了两种修饰的LDL对巨噬细胞高密度脂蛋白_3(HDL_3)结合量及细胞内胆固醇酯聚集的影响。结果说明:1.Cu~(2+)和MDA修饰的LDL都可使巨噬细胞HDL_3结合量下降,细胞内脂质过氧化物(LPO)含量升高,但当处理细胞在含10%无脂血清(LPDS)培养液中继续培养时,由MDA修饰的LDL(MDA-LDL)导致的HDL_3结合量降低又有一定的恢复,细胞内LPO含量不再升高,而Cu~(2+)修饰的LDL(Cu~(2+)-LDL)处理的细胞继续培养时,HDL_3结合量则继续下降,细胞LPO含量则继续升高。2.由Cu~(2+)-LDL导致的巨噬细胞HDL_3结合量下降与细胞LPO含量升高之间呈负相关(r=-0.81,P<0.01)。3.MDA-LDL和Cu~(2+)-LDL都可造成巨噬细胞胆固醇酯聚集,但MDA-LDL造成的胆固醇酯可被HDL_3大量清除而Cu~(2+)-LDL造成的胆固醇酯聚集则不能。  相似文献   

19.
Glutamine has been used in the composition of semen extenders in several species, but never in the bull. The aim of our study is to demonstrate the cryoprotective role of glutamine for freezing bovine semen and to determine concentration of the latter to improve the motility and trajectory characteristics of spermatozoa. Three experiments were undertaken with 21 ejaculates from three different bulls. In the first experiment, glutamine was added to 40, 80, and 120 mM of basic medium (BM) which consisted of Tris + glycerol 6.4% (v/v). In the second experiment glutamine was added to the 8% low density lipoprotein (LDL) diluent at 40, 80, and 120 mM. In the third experiment, the best concentration of glutamine was determined; this was then added to the LDL extender at 10, 20, 30, and 40 mM. The semen was diluted then frozen in the different media. Motility parameters were assessed using an image analyser following thawing. Experiment 1 demonstrated that glutamine had a cryoprotective effect; at 40 mM it gave superior motility parameters to those obtained with the basic medium (p < 0.05). Experiment 2 demonstrated that the combination of LDL-glutamine 40 mM and 80 mM did not improve motility and even deteriorated it in comparison with the glutamine-free LDL extender. Experiment 3 demonstrated that the addition of 10 mM of glutamine to the LDL medium lead to a significant improvement (p < 0.05) in the motility of bull spermatozoa and could be used to improve bovine semen extenders.  相似文献   

20.
目的:探讨乳房基底部移植大鼠骨髓间充质干细胞(BMSCs)对实验性乳腺炎大鼠血清中自由基和抗氧化酶水平变化的影响。方法:将70只SD雌性大鼠,其中的60只随机分为3组:对照组、抗生素组和移植BMSCs组,每组20只。通过乳头管灌注内毒素的方法建立实验性大鼠乳腺炎模型,对照组基底部注射生理盐水;抗生素组基底部注射抗生素(5000 U/侧);移植BMSCs组乳房基底部移植BMSC 50μL(1×106个),试验0 d时灌注内毒素,1 d时注射BMSCs、抗生素及生理盐水,-1、0、3、5、7 d分别采血样,制备血清,检测血清中丙二醛(MDA)、一氧化氮(NO)、超氧化物歧化酶(SOD)、谷胱甘肽氧化还原酶(GSH-Px)、过氧化氢酶(CAT)水平。结果:移植BMSC组能显著降低乳腺炎大鼠血清中7 d时MDA、NO水平(P〈0.05),且MDA水平显著低于抗生素组(P〈0.05);移植BMSCs组7 d时血清中GSH-Px水平和1、3、5 d时CAT水平显著高于对照组和抗生素组(P〈0.05)。结论:BMSC能显著降低乳腺炎大鼠血清中后期NO和MDA水平,提高血清中前期CAT和后期GSH-PX,从而提高机体清除自由基的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号