首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of A(1) adenosine receptors (ARs) protects against renal ischemia-reperfusion (I/R) injury by reducing necrosis, apoptosis, and inflammation. However, extrarenal side effects (bradycardia, hypotension, and sedation) may limit A(1)AR agonist therapy for ischemic acute kidney injury. Here, we hypothesized that an allosteric enhancer for A(1)AR (PD-81723) protects against renal I/R injury without the undesirable side effects of systemic A(1)AR activation by potentiating the cytoprotective effects of renal adenosine generated locally by ischemia. Pretreatment with PD-81723 produced dose-dependent protection against renal I/R injury in A(1)AR wild-type mice but not in A(1)AR-deficient mice. Significant reductions in renal tubular necrosis, neutrophil infiltration, and inflammation as well as tubular apoptosis were observed in A(1)AR wild-type mice treated with PD-81723. Furthermore, PD-81723 decreased apoptotic cell death in human proximal tubule (HK-2) cells in culture, which was attenuated by a specific A(1)AR antagonist (8-cyclopentyl-1,3-dipropylxanthine). Mechanistically, PD-81723 induced sphingosine kinase (SK)1 mRNA and protein expression in HK-2 cells and in the mouse kidney. Supporting a critical role of SK1 in A(1)AR allosteric enhancer-mediated renal protection against renal I/R injury, PD-81723 failed to protect SK1-deficient mice against renal I/R injury. Finally, proximal tubule sphingosine-1-phosphate type 1 receptors (S1P(1)Rs) are critical for PD-81723-induced renal protection, as mice selectively deficient in renal proximal tubule S1P(1)Rs (S1P(1)R(flox/flox) PEPCK(Cre/-) mice) were not protected against renal I/R injury with PD-81723 treatment. Taken together, our experiments demonstrate potent renal protection with PD-81723 against I/R injury by reducing necrosis, inflammation, and apoptosis through the induction of renal tubular SK1 and activation of proximal tubule S1P(1)Rs. Our findings imply that selectively enhancing A(1)AR activation by locally produced renal adenosine may be a clinically useful therapeutic option to attenuate ischemic acute kidney injury without systemic side effects.  相似文献   

2.
Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)β), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.  相似文献   

3.
We examined whether the mitogen-activated protein kinase (MAPK) pathway is involved in Shiga toxin (Stx)-induced Vero cell injury. Consonant with cell injury, Stx caused a transient extracellular signal-regulated kinase1/2 (ERK1/2) and a sustained p38 MAPK phosphorylation. p38 MAPK inhibitors (SB 203580 and PD 169316), but not an ERK1/2 kinase inhibitor (PD 98059), partially inhibited the Stx-induced cell death. BAPTA-AM, a Ca(2+) chelator, reduced both cell injury and p38 MAPK phosphorylation. Antioxidants reduced Stx1-induced p38 MAPK phosphorylation. These data indicate that Stx activates p38 MAPK through an increase in intracellular Ca(2+) and reactive oxygen species, and this signaling is involved in Stx-induced cell death.  相似文献   

4.
Treatment for 2 h with 200 microM cadmium chloride, followed by recovery, caused apoptosis and induced heat-shock protein 70 (HSP70) expression in U-937 promonocytic cells. However, pre-incubation with the GSH depleting agent L-buthionine-[S,R]-sulfoximine (BSO, 1 mM for 24 h) caused necrosis instead of apoptosis and failed to induce HSP70 expression. This failure was a consequence of necrosis instead of GSH depletion, since BSO allowed or even potentiated HSP70 induction when used in combination with heat shock (2 h at 42.5 degrees C) or with 50 microM cadmium, which caused apoptosis. The administration of N-acetyl-L-cysteine (NAC) at the beginning of recovery after BSO/200 microM cadmium treatment prevented the execution of necrosis and restored the execution of apoptosis, but did not restore HSP70 induction, indicating that the inhibition by BSO of HSP70 expression is an early regulated event. This contrasted with the capacity of NAC to prevent the alterations caused by BSO/200 microM cadmium in other proteins, namely the suppression of Bax expression and the increase in Bcl-2 and HSP-60 expression. Finally, it was observed that treatment with 200 microM cadmium rapidly increased the HSP70 mRNA level and stimulated heat-shock factor 1 (HSF1) trimerization and binding, and that these effects were prevented by pre-incubation with BSO. Taken together, these results indicate that the stress response is compatible with apoptosis but not with necrosis in cadmium-treated promonocytic cells. The suppression of the stress response is specifically due to the early inhibition of HSF1 activation.  相似文献   

5.
In the kidney, cell injury resulting from ischemia and hypoxia is thought to be due, in part, to increased cytosolic Ca(2+) levels, [Ca(2+)]i, leading to activation of lytic enzymes, cell dysfunction, and necrosis. We report evidence of a progressive and exponential increase in [Ca(2+)]i (from 245 +/- 10 to 975 +/- 100 nM at 45 mins), cell permeabilization and propidium iodide (PI) staining of the nucleus, and partial loss of cell transport functions such as Na(+)-gradient-dependent uptakes of (14)C-alpha-methylglucopyranoside and inorganic phosphate ((32)Pi) in proximal convoluted tubules of adult rabbits subjected to hypoxia. The rise in [Ca(2+)]i depended on the presence of extracellular [Ca(2+)] and could be blocked by 50 microM Ni(2+)but not by verapamil (100 microM). Presence of 50 microM Ni(2+) also reduced the hypoxia-induced morphological and functional injuries. We also used HEK 293 cells, a kidney cell line, incubated in media without glucose and exposed for 3.5 hrs to 1% O(2)-5% CO(2) and then returned to glucose-containing media for another 3.5 hrs in an air-5% CO(2) atmosphere and finally exposed for 1 min to media containing 1 microM PI. NiCl(2) (50 microM) or pentobarbital (300 microM) more than phenobarbital (1.5 mM), when present in the incubation medium during both the hypoxic and the reoxygenation periods, induced significant (P < 0.001) reductions in the number of cell nuclei stained with PI, similar to their relative potency as inhibitors of T channels. Our findings indicate that hypoxia-induced alterations in calcium level and subsequent cell injury in the proximal convoluted tubule and in HEK cells involve a nickel-sensitive and dihydropyridine insensitive pathway or channel.  相似文献   

6.
7.
Human intestinal cells lack globotriaosylceramide (Gb(3)), the receptor for Shiga toxin-1 (Stx1) and Shiga toxin-2 (Stx2). Therefore, the role of these toxins in mediating intestinal disease during infection with Shiga toxin-producing Escherichia coli is unclear. The aims of this study were to determine whether Stx1 and Stx2 induce apoptosis in epithelial cells expressing (HEp-2, Caco-2) or lacking (T84) Gb(3) and to characterize the role of the Bcl-2 family. Stx1 (12.5 ng/ml) induced apoptosis in both HEp-2 (21.9 +/- 7.9% vs. 0.8 +/- 0.3%, P = 0.01) and Caco-2 (10.1 +/- 1.2% vs. 3.1 +/- 0.4%, P = 0.006) cells but not in Gb(3)-deficient T84 cells. Toxin-mediated apoptosis of HEp-2 cells was associated with enhanced expression of the proapoptotic protein Bax. Inhibition of caspase activation prevented toxin-stimulated apoptosis. In addition, overexpression of Bcl-2 by transient transfection blocked Stx1-stimulated cell death. These findings indicate that Shiga toxins produced by E. coli signal Gb(3)-expressing epithelial cells to undergo apoptosis in association with enhanced Bax expression, thereby resulting in activation of the caspase cascade.  相似文献   

8.
The therapeutic efficacy of the antineoplastic drug cisplatin is limited by its nephrotoxicity, which affects particularly to proximal tubular cells (PTC). Cisplatin-induced cytotoxicity appears to be multifactorial and involves inflammation, oxidative stress as well as apoptosis. We have recently shown that the cyclo-oxygenase-2 (COX-2)/intracellular prostaglandin E2 (iPGE2)/EP receptor pathway mediates the apoptotic effect of cisplatin on human proximal tubular HK-2 cells. Here, we studied the effects on HK-2 cells of apoptotic bodies (ABs) generated after treatment of HK-2 cells with cisplatin. We found that ABs inhibited cell growth, induced apoptosis and increased COX-2 expression and iPGE2 in ABs-recipient HK-2 cells. Inhibition of the COX-2/iPGE2/EP receptor pathway in these cells prevented the effects of ABs without interfering with their internalization. Interestingly, 2nd generation ABs (i.e. ABs released by cells undergoing apoptosis upon treatment with ABs) did not trigger apoptosis in naïve HK-2 cells, and stimulated cell proliferation through the COX-2/iPGE2/EP receptor pathway. These results suggest that ABs, through iPGE2-dependent mechanisms, might have a relevant role in the natural history of cisplatin-induced acute kidney failure because they contribute first to the propagation of the noxious effects of cisplatin to non-injured PTC and then to the promotion of the proliferative tubular response required for proximal tubule repair. Since iPGE2 also mediates both cisplatin-induced HK-2 cell apoptosis, intervention in the COX-2/iPGE2/EP receptor pathway might provide us with new therapeutic avenues in patients with cisplatin-induced acute kidney injury.  相似文献   

9.
The major heat shock protein, HSP70, is known to be involved in cytoprotection against environmental stresses mediated by their function as a "molecular chaperone". Monochloramine (NH(2)Cl) is a potent cytotoxic oxidant generated by neutrophil-derived hypochlorous acid and Helicobacter pylori urease-induced ammonia. In this study, to evaluate the cytoprotective effect of HSP70 against NH(2)Cl-induced gastric mucosal cell injury, rat gastric mucosal cells (RGM-1) were stably transfected with pBK-CMV containing the human HSP70 gene (7018-RGM-1) or pBK-CMV alone (pBK-CMV-12) as control cells. These cells were treated with various concentrations of NH(2)Cl. Cell Viability was determined by MTT assay and the direct plasma membrane damage was analyzed by lactate dehydrogenase (LDH) release assay. Apoptosis was determined by DNA fragmentation analysis. NH(2)Cl caused injury to pBK-CMV-12 cells in a concentration-dependent manner. NH(2)Cl-induced gastric cell injury was significantly diminished in HSP70 over-expressing cell line (7018-RGM-1) both necrosis and apoptosis compared to the control cell line (pBK-CMV-12) transfected with CMV vector alone. These result suggest that overexpression of HSP70 plays an important role in protecting gastric cells against NH(2)Cl-induced injury.  相似文献   

10.
11.
12.
Gentamicin nephrotoxicity is one of the most common causes of acute kidney injury (AKI). Hypoxia-inducible factor (HIF) is effective in protecting the kidney from ischemic and toxic injury. Increased expression of HIF-1α mRNA has been reported in rats with gentamicin-induced renal injury. We hypothesizd that we could study the role of HIF in gentamicin-induced AKI by modulating HIF activity. In this study, we investigated whether HIF activation had protective effects on gentamicin-induced renal tubule cell injury. Gentamicin-induced AKI was established in male Sprague-Dawley rats. Cobalt was continuously infused into the rats to activate HIF. HK-2 cells were pre-treated with cobalt or dimethyloxalylglycine (DMOG) to activate HIF and were then exposed to gentamicin. Cobalt or DMOG significantly increased HIF-1α expression in rat kidneys and HK-2 cells. In HK-2 cells, HIF inhibited gentamicin-induced reactive oxygen species (ROS) formation. HIF also protected these cells from apoptosis by reducing caspase-3 activity and the amount of cleaved caspase-3, and -9 proteins. Increased expression of HIF-1α reduced the number of gentamicin-induced apoptotic cells in rat kidneys and HK-2 cells. HIF activation improved the creatinine clearance and proteinuria in gentamicin-induced AKI. HIF activation also ameliorated the extent of histologic injury and reduced macrophage infiltration into the tubulointerstitium. In gentamicin-induced AKI, the activation of HIF by cobalt or DMOG attenuated renal dysfunction, proteinuria, and structural damage through a reduction of oxidative stress, inflammation, and apoptosis in renal tubular epithelial cells.  相似文献   

13.
The hormonal interactions that regulate electrolyte transport in the proximal tubule are complex and incompletely understood. Since endogenous glucocorticoids and angiotensin II each can affect electrolyte transport in this renal segment, we hypothesized that local metabolism of glucocorticoids by the enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) might alter the response to angiotensin II. Studies were conducted in cultured origin defective SV-40 transformed immortalized renal proximal tubule cells (IRPTC) derived from weanling Wistar rat kidney. The 11beta-HSD contained in these cells uses NADP+, has an apparent Km for corticosterone of 1.6 microM, but functions only as a dehydrogenase (corticosterone --> 11-dehydro-corticosterone). When mounted in modified Ussing chambers, IRPTC generate a transmembrane current, and angiotensin II (10 pM to 10 microM) increases this sodium-dependent current. Cells incubated with corticosterone (100 nM) and the 11beta-HSD inhibitor carbenoxolone (CBX) (1 microM) for 24 hr and then acutely stimulated with angiotensin (10 nM) show a greater rise in current than do cells exposed to corticosterone alone and stimulated with angiotensin (corticosterone + CBX: 64.2% +/- 20.5% vs. corticosterone: 18.8% +/- 5.9%; P < 0.02 at 180 min)[mean +/- SE percentage above baseline, n = 8/group]. Cells exposed to corticosterone (100 nM) or CBX (1 microM) alone for 24 hr and then stimulated with angiotensin II (10 nM) had responses similar to controls. Thus glucocorticoids can enhance angiotensin II-induced electrolyte transport in proximal tubule epithelial cells when local 11beta-HSD is inhibited.  相似文献   

14.
Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT''s anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4–72 hrs later. Rapidly following injury, 5–10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, −0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100–1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.  相似文献   

15.
Mild hyperuricemia has been linked to the development and progression of tubulointerstitial renal damage. However the mechanisms by which uric acid may cause these effects are poorly explored. We investigated the effect of uric acid on apoptosis and the underlying mechanisms in a human proximal tubule cell line (HK-2). Increased uric acid concentration decreased tubule cell viability and increased apoptotic cells in a dose dependent manner (up to a 7-fold increase, p<0.0001). Uric acid up-regulated Bax (+60% with respect to Ctrl; p<0.05) and down regulated X-linked inhibitor of apoptosis protein. Apoptosis was blunted by Caspase-9 but not Caspase-8 inhibition. Uric acid induced changes in the mitochondrial membrane, elevations in reactive oxygen species and a pronounced up-regulation of NOX 4 mRNA and protein (p<0.05). In addition, both reactive oxygen species production and apoptosis was prevented by the NADPH oxidase inhibitor DPI as well as by Nox 4 knockdown. URAT 1 transport inhibition by probenecid and losartan and its knock down by specific siRNA, blunted apoptosis, suggesting a URAT 1 dependent cell death. In summary, our data show that uric acid increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signalling and URAT 1 transport. These results might explain the chronic tubulointerstitial damage observed in hyperuricaemic states and suggest that uric acid transport in tubular cells is necessary for urate-induced effects.  相似文献   

16.
Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (approximately 0.5-1.3 mm2) were created in cultured 1HAEo- human airway epithelial cell monolayers, after which cells were treated with up to 10 microM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 microM dexamethasone was 43+/-18% vs. 10+/-8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 microM budesonide was 39+/-4% vs. 43+/-3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo-.Bcl-2+ cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.  相似文献   

17.
The present experiments using primary cultures of renal proximal tubule cells derived from wild-type and NHERF-1 knockout animals examines the regulation of NHE3 by phenylthiohydantoin (PTH) and the regulation of phosphate transport in response to alterations in the media content of phosphate. Forskolin (34.8 +/- 6.2%) and PTH (29.7 +/- 1.8%) inhibited NHE3 activity in wild-type proximal tubule cells but neither forskolin (-3.2 +/- 3.3%) nor PTH (-16.6 +/- 8.1%) inhibited NHE3 activity in NHERF-1(-/-) cells. Using adenovirus-mediated gene transfer, expression of NHERF-1 in NHERF-1(-/-) proximal tubule cells restored the inhibitory response to forskolin (28.2 +/- 3.0%) and PTH (33.2 +/- 3.9%). Compared with high phosphate media, incubation of wild-type cells in low phosphate media resulted in a 36.0 +/- 6.3% higher rate of sodium-dependent phosphate transport and a significant increase in the abundance of Npt2a and PDZK1. NHERF-1(-/-) cells, on the other hand, had lower rates of sodium-dependent phosphate uptake and low phosphate media did not stimulate phosphate transport. Npt2a expression was not affected by the phosphate content of the media in NHERF-1 null cells although low phosphate media up-regulated PDZK1 abundance. Primary cultures of mice proximal tubule cells retain selected regulatory pathways observed in intact kidneys. NHERF-1(-/-) proximal tubule cells demonstrate defective regulation of NHE3 by PTH and indicate that reintroduction of NHERF-1 repairs this defect. NHERF-1(-/-) cells also do not adapt to alterations in the phosphate content of the media indicating that the defect resides within the cells of the proximal tubule and is not dependent on systemic factors.  相似文献   

18.
Summary Renal injury is a common side effect of the chemotherapeutic agent ifosamide. Current evidence suggests that the ifosfamide metabolite chloroacetaldehyde may contribute to this nephrotoxicity. The present study examined the effects of ifosfamide and chloroacetaldehyde on rabbit proximal renal tubule cells in primary culture. The ability of the uroprotectant medication sodium 2-mercaptoethanesulfonate (mesna) to prevent chloroacetaldehyde-induced renal cell injury was also assessed. Chloroacetaldehyde (12.5–150 μM) produced dose-dependent declines in neutral red dye uptake, ATP levels, glutathione content, and cell growth. Coadministration of mesna prevented chloroacetaldehyde toxicity while pretreatment of cells with the glutathione-depleting agent buthionine sulfoximine enhanced the toxicity of chloroacetaldehyde. Ifosfamide (1000–10 000 μM) toxicity was detected only at concentrations of 4000 μM or greater. Analysis of media collected from ifosfamide-treated cell cultures revealed the presence of several ifosfamide metabolites, demonstrating that renal proximal tubule cells are capable of biotransforming this chemotherapeutic agent. This primary renal cell culture system should prove useful in studying the cause and prevention of ifosfamide nephrotoxicity.  相似文献   

19.
Kim J  Kim SY  Kang S  Yoon HR  Sun BK  Kang D  Kim JH  Song JJ 《Cellular signalling》2012,24(7):1444-1452
The combination of curcumin and TRAIL and their role in enhancing apoptotic cell death has been reported by many studies. However, the exact molecular mechanism of apoptosis mediated by curcumin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is not yet completely understood. In this study, we observed a close connection between dephosphorylated Akt and an increase in phosphorylated heat shock protein 27 (HSP27) during combined treatment with curcumin and TRAIL. Akt dephosphorylation was cumulatively regulated by protein phosphatase 1 (PP1), phosphoinositide-dependent kinase-1 (PDK1), and src. PP1 and PDK1 directly interacted with HSP27, whereas src indirectly interacted with HSP27 via the tumor necrosis factor receptor-associated factor 6 complex. In conclusion, HSP27 modulated cell survival by its interactions with various binding partners, depending on the level of phosphorylated HSP27.  相似文献   

20.
Shiga toxins (Stxs) produced by Stx‐producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx‐mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte‐derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage‐like differentiated THP‐1 cells treated with Stxs secreted Stx‐associated exosomes (Stx‐Exo) of 90–130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3)‐dependent manner. Stx2‐Exo engulfed by Gb3‐positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK‐2. Stx2‐Exo contained pro‐inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2‐Exo‐mediated human renal cell death. Stx2‐Exo isolated from human primary monocyte–derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx‐containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin‐sensitive cells. Therapeutic interventions targeting Stx‐containing exosomes may prevent or ameliorate Stx‐mediated acute vascular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号