首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We study the influence of the individual behaviour of animals on predator-prey models. Populations of preys and predators are divided into sub-populations corresponding to different activity classes. The animals are assumed to do many activities all day long such as searching for food of different types. The preys are more vulnerable when doing some activities during which they are very exposed to predators attacks rather than for others during which they are hidden. We study activity sequences of the animals and also the effect of a change in the average individual behaviour of the animals on Lotka-Volterra prey-predator interactions. Numerical simulations are realized for the whole sets of equations (governing the subpopulations) and are compared to the simulations of the reduced sets of equation (governing the populations). We look for the validity of the method with respect to a scaling factor which measures the differences between the two time scales associated to the fast-varying variables and to the slow-time varying global variables. It is shown that when the two time scales differ of about two orders of magnitude, the approximation is satisfying.  相似文献   

2.
本文主要建立大熊猫与两种竹子共生生态系统三种群的微分方程模型,得到Volterra系统,此生态系统是捕食与被捕食关系.分析了该系统在平衡状态处的稳定性,证明了其全局稳定性.最后,通过有关数据的调控确定大熊猫种群数量范围以及计算出该生态系统在平衡状态处受到标准扰动后的恢复时间.  相似文献   

3.
The well-known Lotka-Volterra differential equations are modified in such way that the predators are supposed to be able to consume only a limited amount of preys in a unit of time. This saturation causes the appearance of nonperiodic solutions while the periodic ones are partly preserved. The paths in the phase plane which correspond to the nonperiodic solutions are expanding spirals of two different shapes. For a particular system of equations, all of the spirals either rotate for ever around the equilibrium point or straighten up at a certain point and head to infinity. The latter alternative occurs if the voracity of the predators is not too great. The biological significance of this result is in the possibility of a simultaneous progressive development of both populations.  相似文献   

4.
This article studies the effects of adaptive changes in predator and/or prey activities on the Lotka-Volterra predator-prey population dynamics. The model assumes the classical foraging-predation risk trade-offs: increased activity increases population growth rate, but it also increases mortality rate. The model considers three scenarios: prey only are adaptive, predators only are adaptive, and both species are adaptive. Under all these scenarios, the neutral stability of the classical Lotka-Volterra model is partially lost because the amplitude of maximum oscillation in species numbers is bounded, and the bound is independent of the initial population numbers. Moreover, if both prey and predators behave adaptively, the neutral stability can be completely lost, and a globally stable equilibrium would appear. This is because prey and/or predator switching leads to a piecewise constant prey (predator) isocline with a vertical (horizontal) part that limits the amplitude of oscillations in prey and predator numbers, exactly as suggested by Rosenzweig and MacArthur in their seminal work on graphical stability analysis of predator-prey systems. Prey and predator activities in a long-term run are calculated explicitly. This article shows that predictions based on short-term behavioral experiments may not correspond to long-term predictions when population dynamics are considered.  相似文献   

5.
A lattice prey–predator model is studied. Transition rules applied sequentially describe processes such as reproduction, predation, and death of predators. The movement of predators is governed by a local particle swarm optimization algorithm, which causes the formation of swarms of predators that propagate through the lattice. Starting with a single predator in a lattice fully covered by preys, we observe a wavefront of predators invading the zones dominated by preys; subsequent fronts arise during the transient phase, where a monotonic approach to a fixed point is present. After the transient phase the system enters an oscillatory regime, where the amplitude of oscillations appears to be bounded but is difficult to predict. We observe qualitative similar behavior even for larger lattices. An empirical approach is used to determine the effects of the movement of predators on the temporal dynamics of the system. Our results show that the algorithm used to model the movement of predators increases the proficiency of predators.  相似文献   

6.
Successful invasion of a food web in a chemostat   总被引:1,自引:0,他引:1  
A food web in a chemostat is considered in which an arbitrary number of competitor populations compete for a single, essential, nonreproducing, growth-limiting substrate, and an arbitrary number of predator populations prey on some or all of the competitor populations. Although any number of predator populations may prey on the same competitor population, each predator population preys on only one competitor population. The dynamics of substrate uptake is modeled by Lotka-Volterra or Michaelis-Menten (Holling type I or II), but the dynamics of competitor uptake is restricted to Lotka-Volterra. Based on certain parameters, the model predicts the asymptotic survival or extinction of each of the different populations and suggests how competitor and/or predator populations could successfully invade the chemostat with or without causing a diverse ecosystem to crash. Similarly, it suggests how the elimination of certain populations could result in a more diverse or less diverse system.  相似文献   

7.
Arterial smooth muscle cells exhibit vasomotion, related to oscillations in intracellular Ca(2+) concentration, but the origin and function of these has not yet been fully determined. We measured intracellular Ca(2+) using conventional fluorescent methods in primary cultured, human umbilical cord artery smooth muscle cells (HUCASMC). Spontaneous oscillations in Ca(2+) was found in only 1% of all cells but exogenous, micromolar concentrations of ATP could induce Ca(2+) oscillations in 70% of cells with the most common pattern being one of regular amplitude and frequency with a return to basal levels between each peak. The P2Y agonist, UTP, but not the P2X agonist alphabeta-methylene ATP, could also induce Ca(2+) oscillations. Once induced, these oscillations could not be blocked by G-protein, PLC, VGCC or TRP channel antagonists applied individually, but could be prevented when antagonists were applied together. In the presence of EGTA, micromolar concentrations of ATP induced an elevation in intracellular Ca(2+) but did not induce Ca(2+) oscillations. The oscillation frequency induced by ATP was affected by bath Ca(2+) concentration. Taken together, these data suggest that external Ca(2+) entry maintains the Ca(2+) oscillation induced by activation of P2Y receptors. Once induced, multiple mechanisms are involved to maintain the oscillation and the oscillation frequency is determined by the speed of Ca(2+) refilling. Chronic hypoxia enhanced the Ca(2+) response and altered the oscillation frequency. We suggest that these oscillations may play a role in the maintenance of umbilical blood flow during situations in which GPCR are activated.  相似文献   

8.
Cannibalism in an age-structured predator-prey system   总被引:3,自引:0,他引:3  
Recently, Kohlmeier and Ebenhöh showed that cannibalism can stabilize population cycles in a Lotka-Volterra type predator-prey model. Population cycles in their model are due to the interaction between logistic population growth of the prey and a hyperbolic functional response. In this paper, we consider a predator-prey system where cyclic population fluctuations are due to the age structure in the predator species. It is shown that cannibalism is also a stabilizing mechanism when population oscillations are due to this age structure. We conclude that in predator-prey systems, cannibalism by predators can stabilize both externally generated (consumer-resource) as well as internally generated (agestructure) fluctuations.  相似文献   

9.
Andrews SS  Bray D 《Physical biology》2004,1(3-4):137-151
Methods are presented for simulating chemical reaction networks with a spatial resolution that is accurate to nearly the size scale of individual molecules. Using an intuitive picture of chemical reaction systems, each molecule is treated as a point-like particle that diffuses freely in three-dimensional space. When a pair of reactive molecules collide, such as an enzyme and its substrate, a reaction occurs and the simulated reactants are replaced by products. Achieving accurate bimolecular reaction kinetics is surprisingly difficult, requiring a careful consideration of reaction processes that are often overlooked. This includes whether the rate of a reaction is at steady-state and the probability that multiple reaction products collide with each other to yield a back reaction. Inputs to the simulation are experimental reaction rates, diffusion coefficients and the simulation time step. From these are calculated the simulation parameters, including the 'binding radius' and the 'unbinding radius', where the former defines the separation for a molecular collision and the latter is the initial separation between a pair of reaction products. Analytic solutions are presented for some simulation parameters while others are calculated using look-up tables. Capabilities of these methods are demonstrated with simulations of a simple bimolecular reaction and the Lotka-Volterra system.  相似文献   

10.
Periodic Lotka-Volterra competition equations   总被引:3,自引:1,他引:2  
The Lotka-Volterra competition equations with periodic coefficients derived from the MacArthur-Levins theory of a one-dimensional resource niche are studied when the parameters are allowed to oscillate periodically in time. Specifically, niche positions and widths, resource availability and resource consumption rates are allowed small amplitude periodicities around a specified mean value. Two opposite cases are studied both analytically and numerically. First only resource consumption rates are allowed to oscillate while niche dimensions and resource availability are held constant. The resulting oscillations in population densities and the strength of the system stability as they depend upon crucial relative phase and amplitude differences between the species' consumption rates are studied. This leads to a clear notion of "temporal niche" and of the effects that such oscillations can have on competitive coexistence. Secondly, all system parameters are allowed to oscillate, although the oscillatory consumption rates are assumed identical for both species. The effects on the population density oscillations and their averages are studied and the "best" choice of the common, periodic resource consumption rate for these two "identical" species competing for similar (even identical) niches is considered.  相似文献   

11.
在复杂生化系统的研究过程中,仿真与建模变得越来越重要.对于参与分子数量比较大的生化系统,通常可以采用常微分方程来解决这一问题.对于分子数量比较小的系统,离散粒子基础上的随机模拟方法更精确.然而目前还没有明确的理论方法来确定,对于实际问题用哪种方法能得到更合理的结果.因此需要在一个普遍研究的体系中,通过Ca~(2+)振荡传导信号来研究从随机行为到确定行为的过渡过程.本文以肝细胞中Ca~(2+)振荡对肝糖磷酸化酶激活随机效应为例,讨论了利用随机微分方程来解决分子数量比较小的生化系统的仿真与建模问题,利用细胞内Ca~(2+)有关的Li-Rinzel随机模型,研究了在磷酸化酶降解肝糖的磷酸化-去磷酸化作用循环过程中,三磷酸肌醇受体通道(IP_3R)释放Ca~(2+)的调控作用.结果表明,肝糖磷酸化酶的激活率随受体通道IP_3R的总数增大而减弱,而且三磷酸肌醇浓度比较小时出现相干共振.  相似文献   

12.
13.
We investigate the dynamical behaviour of a simple plankton population model, which explicitly simulates the concentrations of nutrient, phytoplankton and zooplankton in the oceanic mixed layer. The model consists of three coupled ordinary differential equations. We use analytical and numerical techniques, focusing on the existence and nature of steady states and unforced oscillations (limit cycles) of the system. The oscillations arise from Hopf bifurcations, which are traced as each parameter in the model is varied across a realistic range. The resulting bifurcation diagrams are compared with those from our previouswork, where zooplankton mortality was simulated by a quadratic function—here we use a linear function, to represent alternative ecological assumptions. Oscillations occur across broader ranges of parameters for the linear mortality function than for the quadratic one, although the two sets of bifurcation diagrams show similar qualitative characteristics. The choice of zooplankton mortality function, or closure term, is an area of current interest in the modelling community, and we relate our results to simulations of other models.  相似文献   

14.
We consider a two-trophic ecological model comprising of two predators competing for their common prey. We cast the model into the framework of a singular perturbed system of equations in one fast variable (prey population density) and two slow variables (predator population densities), mimicking the common observation that the per-capita productivity rate decreases from bottom to top along the trophic levels in Nature. We assume that both predators exhibit Holling II functional response with one of the predators (territorial) having a density dependent mortality rate. Depending on the system parameters, the model exhibits small, intermediate and/or large fluctuations in the population densities. The large fluctuations correspond to periodic population outbreaks followed by collapses (commonly known as cycles of “boom and bust”). The small fluctuations arise due to a singular Hopf bifurcation in the system, and are ecologically more desirable. However, more interestingly, the system exhibits mixed-mode oscillations (which are concatenations of the large amplitude oscillations and the small amplitude oscillations) that indicate the adaptability of the species to prolong the time gap between successive cycles of boom and bust. Numerical simulations are carried out to demonstrate the extreme sensitivity of the system to initial conditions (chaos and bistability of limit cycles are observed) as well as to the system parameters (here we only show the sensitivity to the density dependent mortality rate of the territorial predator). This model throws light at the uncertainties in long term behaviors that are associated with a real ecological system. We show that even very small changes in the system parameters due to natural or human-induced causes can lead to a complete different ecological phenomenon, thus affecting the predictability of the density of the prey population. In this paper, we explain the mechanisms behind the irregular fluctuations in the population sizes in an attempt to understand the dynamics occurring in a natural population and also comment on the inherent uncertainties associated with the system.  相似文献   

15.
A kinetic model of the sodium channel gating system consisting of four subunits with three states--closed (X), open (Y) and inactivated (Z)--is proposed. For the channel to conduct, all the four subunits must be in the open state. The transitions between states X and Y are independent, while those between states X and Z are coupled, so that for the particle considered transition of one of two neighbouring particles into state Z increases the activation energy of the step by kT. The model fits rather well to the experimental data.  相似文献   

16.
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.  相似文献   

17.
A stability condition for Hopf-bifurcating solutions from the uniform equilibrium of clasical Lotka-Volterra interaction-diffusion equations is presented. Using this condition, it is shown that stable spatio-temporal oscillations exist in the framework of such equations.  相似文献   

18.
The common belief is that all biological oscillations are of limit cycle type. It is shown in this article that the phase response curves simulated on a two-species Lotka-Volterra linear (i.e. non-limit cycle type) oscillator, do look similar to those obtained by experimental methods by different workers. The form of the phase response curves, the existence of singularities and the mirror-image symmetry of opposite perturbations are modelled on the Lotka-Volterra system. The study, which is strongly indicative of the possibility that the underlying oscillator (or oscillators) is (are) not structurally stable, also indicates the necessity of designing critical experiments, capable of distinguishing between limit cycle and non-limit cycle oscillators, since the single-pulse phase resetting does nothing to distinguish between them.  相似文献   

19.
The scenarios of the formation of population distributions have been analyzed for a system of nonlinear reaction–diffusion–advection equations to describe the spatiotemporal distribution of predators and prey. The conditions that must be fulfilled for the model to belong to the class of cosymmetric systems were identified using an analytical approach. Computer simulations of a system with prey and two predators showed that the emergence of families of stationary distributions and oscillatory modes is possible when these conditions are met. The initial distributions of predators were shown to determine the character of the scenario (stationary or non-stationary) at certain combinations of parameters.  相似文献   

20.
Three examples of the diffusive 3-species Lotka-Volterra system with constant interaction parameters are given, and by bifurcation techniques shown to have stable spatially non-constant equilibrium solutions. One example is competitive; the second one predator-two-competing prey and the third involves two predators and a single prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号