首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrapeptides containing the sequence Arg-Gly-Asp (RGD) antagonize fibrinogen binding to its platelet receptor (gp IIb/IIIa, integrin alpha IIb beta 3) and inhibit platelet aggregation in vitro. The peptides RGDS and RGDY(Me)-NH2 were rapidly degraded when incubated in human, rat, and dog plasma. HPLC analysis indicated that amino acids were sequentially removed from the peptide N-terminus, and this degradation was prevented by the aminopeptidase inhibitor bestatin. Analogs of RGDY(Me)-NH2 with an acetylated or deleted alpha-amino group were prepared. Both analogs were stable when incubated in plasma, blocked 125I-fibrinogen binding to activated platelets (IC50 = 10-30 microM) and inhibited ADP induced platelet aggregation (IC50 = 10-30 microM). This study concludes that aminopeptidase rapidly degrades RGD peptides in plasma, an important issue for in vivo testing of RGD peptides and analogs. RGD analogs intrinsically stabilized against aminopeptidase are stable in plasma and are important tools for antithrombotic studies involving antagonism of gp IIb/IIIa.  相似文献   

2.
R Mentlein 《FEBS letters》1988,234(2):251-256
The proteases involved in the maturation of regulatory peptides like those of broader specificity normally fail to cleave peptide bonds linked to the cyclic amino acid proline. This generates several mature peptides with N-terminal X-Pro-sequences. However, in certain non-mammalian tissues repetitive pre-sequences of this type are removed by specialized dipeptidyl (amino)peptidases during maturation. In mammals, proline-specific proteases are not involved in the biosynthesis of regulatory peptides, but due to their unique specificity they could play an important role in the degradation of them. Evidence exists that dipeptidyl (amino)peptidase IV at the cell surface of endothelial cells sequesters circulating peptide hormones which are then susceptible to broader aminopeptidase attack. The cleavage of several neuropeptides by prolyl endopeptidase has been demonstrated in vitro, but its role in the brain is questionable since the precise localization of the protease is not clarified.  相似文献   

3.
The serine peptidases, thrombocytin and PA-BJ, isolated from the venom of Bothrops atrox and Bothrops jararaca, respectively, induce platelet aggregation and granule secretion without clotting fibrinogen. The specific platelet aggregation activity of each enzyme was about 15 times lower than that of thrombin. This activity was blocked by monoclonal antibodies recognizing protease activated receptor 1 (PAR1) and by heparin, but not by hirudin nor thrombomodulin. Both enzymes induced calcium mobilization in platelets and desensitized platelets to the action of thrombin and the SFLLRN peptide. We compared the effect of thrombin, PA-BJ, and thrombocytin on the degradation of the soluble N-terminal domain of the PAR1 receptor. The major cleavage site by thrombin and both viper enzymes was Arg41-Ser42. In addition, a rapid cleavage of the peptide bond at Arg46-Asn47 by the viper enzymes was observed, resulting in the inactivation of the tethered ligand. PA-BJ and thrombocytin both cleaved at 41-42 and 46-47 peptide bonds, and fragment 42-103 disappeared rapidly. Both viper enzymes caused calcium mobilization in fibroblasts transfected with PAR4 and desensitized these cells to the thrombin action. In conclusion, both PAR1 and PAR4 mediate the effect of viper venom serine peptidases on platelets.  相似文献   

4.
An anti-thrombin peptide (anophelin) was isolated from the salivary glands of the mosquito Anopheles albimanus through molecular sieving and reverse-phase high-performance liquid chromatography. The purified peptide inhibited thrombin-induced platelet aggregation, thrombin esterolytic activity on a synthetic substrate, and thrombin cleavage of fibrinogen. The purified anti-thrombin had a molecular mass of 6342.4 Da. Its amino terminus was blocked, but internal sequence yielded three peptide sequences, which were used to design oligonucleotide probes for polymerase chain reaction amplification of salivary gland cDNA and isolation of the full-length clone. Analysis of the sequence of anophelin shows no similarities to any other anti-thrombin peptides. Anophelin was successfully synthesized and characterized to be a tight-binding, specific, and novel inhibitor of thrombin.  相似文献   

5.
The thrombin receptor (PAR-1) is an unusual transmembrane G-protein coupled receptor in that it is activated by serine protease cleavage of its extracellular N-terminus to expose an agonist peptide ligand, which is tethered to the receptor itself. Synthetic peptides containing the agonist motif, such as SFLLRN for human PAR-1, are capable of causing full receptor activation. We have probed the possible bioactive conformations of thrombin receptor-activating peptides (TRAPs) by systematic introduction of certain conformational perturbations, involving alpha-methyl, ester psi(COO), and reduced-amide psi(CH2N) scans, into the minimum-essential agonist sequence (SFLLR) to probe the importance of the backbone conformation and amide NH hydrogen bonding. We performed extensive conformational searches of representative pentapeptides to derive families of putative bioactive structures. In addition, we employed 1H NMR and circular dichroism (CD) to characterize the conformational disposition of certain pentapeptide analogues experimentally. Activation of platelet aggregation by our pentapeptide analogues afforded a structure-function correlation for PAR-1 agonist activity. This correlation was assisted by PAR-1 receptor binding data, which gauged the affinity of peptide ligands for the thrombin receptor independent of a functional cellular response derived from receptor activation (i.e. a pure molecular recognition event). Series of alanine-, proline-, and N-methyl-scan peptides were also evaluated for comparison. Along with the known structural features for PAR-1 agonist peptides, our work adds to the understanding of peptide topography relative to platelet functional activity and PAR-1 binding. The absolute requirement of a positively charged N-terminus for strong agonist activity was contradicted by the N-terminal hydroxyl peptide psi(HO)S-FLLR-NH2. The amide nitrogen between residues 1 and 2 was found to be a determinant of receptor recognition and the carbonyl groups along the backbone may be involved in hydrogen bonding with the receptor. Position 3 (P3) of TRAP-5 is known to tolerate a wide variety of side chains, but we also found that the amide nitrogen at this position can be substituted by an oxygen, as in SF-psi(COO)-LLR-NH2, without diminishing activity. However, this peptide bond is sensitive to conformational changes in that SFPLR-NH2 was active, whereas SF-NMeL-LR-NH2 was not. Additionally, we found that position 3 does not tolerate rigid spacers, such as 3-aminocyclohexane-1-carboxylic acid and 2-aminocycloalkane-1-carboxylic acid, as analogues 1A, 1B, 2A, 2B, 3, 4, 5A and 5B lack agonist activity. On the basis of our results, we suggest that an extended structure of the agonist peptide is principally responsible for receptor recognition (i.e. binding) and that hydrophobic contact may occur between the side chains of the second (Phe) and fourth (Leu) residues (i.e. P2-P4 interaction).  相似文献   

6.
A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively.  相似文献   

7.
According to present models, thrombin activates platelets by cleaving its receptors after Arg41, creating a new N terminus which acts as a tethered ligand. In support of this model, a peptide (SFLLRNPNDKYEPF or TRP42/55) corresponding to residues 42-55 has been shown to activate the receptor. In the present studies, the structural basis for thrombin receptor activation was examined using fragments of this peptide, as well as variants of the peptide with selected amino acid substitutions. The results show that the features of SFLLRNPNDKYEPF required to mimic the effects of thrombin reside within the first 6 residues, SFLLRN. A hexapeptide comprised of these residues was approximately 5 times more potent than the parent peptide in assays of platelet aggregation and, in addition, caused tyrosine phosphorylation, inhibition of cAMP formation, and an increase in cytosolic Ca2+. Omission of either the Ser residue or the Arg and Asn residues greatly diminished peptide activity, as did the substitution of Ala for Phe or Arg. Substitution of Ala for Ser or the initial Leu, on the other hand, had little adverse effect. The inactive peptides SALLRN and NPNDKYEPF had no effect on platelet activation initiated by SFLLRN, but FLLRN inhibited platelet aggregation in response to both SFLLRN and thrombin. These results suggest that within SFLLRN the Phe and Arg residues are particularly important and that Phe must be preceded by another amino acid, the identity of which is not tightly constrained. This observation and comparisons with the homologous domains of proteins whose tertiary structure is known were used to predict the conformation of the SFLLR sequence. The model which emerged suggests that the SFLLR domain may be part of an extended beta structure in the intact receptor and that cleavage by thrombin causes it to contract and assume a modified helical configuration. In this predicted conformation the side chains of Phe and Arg point in the same direction, potentially into a pocket formed by the remainder of the receptor.  相似文献   

8.
9.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

10.
The N-terminal portions of the Aα and Bβ chains of bovine fibrinogen (CNBr Aα and Bβ), each of which contains an ArgGly bond that is hydrolyzed by thrombin, have been isolated by cyanogen bromide cleavage of fibrinogen and column chromatography of the resulting material. These peptides were digested with thrombin, releasing fibrinopeptide A and GlyProArg from CNBr Aα, and fibrinopeptide B from CNBr Bβ. The C-terminal peptides produced by digestion with thrombin (CNBr α and CNBr β) were purified, and the amino acid sequences of portions of these peptides (30 residues from the N-terminus of CNBr α and 32 residues from the N-terminus of CNBr β) were determined with an automatic sequenator using the Edman degradation.  相似文献   

11.
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.  相似文献   

12.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

13.
Some amino acids are particularly susceptible to degradation in long-lived proteins. Foremost among these are asparagine, aspartic acid and serine. In the case of serine residues, cleavage of the peptide bond on the N-terminal side, as well as racemisation, has been observed. To investigate the role of the hydroxyl group, and whether cleavage and racemisation are linked by a common mechanism, serine peptides with a free hydroxyl group were compared to analogous peptides where the serine hydroxyl group was methylated. Peptide bond cleavage adjacent to serine was increased when the hydroxyl group was present, and this was particularly noticeable when it was present as the hydroxide ion. Adjacent amino acid residues also had a pronounced affect on cleavage at basic pH, with the SerPro motif being especially susceptible to scission. Methylation of the serine hydroxyl group abolished truncation, as did insertion of a bulky amino acid on the N-terminal side of serine. By contrast, racemisation of serine occurred to a similar extent in both O-methylated and unmodified peptides. On the basis of these data, it appears that racemisation of Ser, and cleavage adjacent to serine, occur via separate mechanisms. Addition of water across the double bond of dehydroalanine was not detected, suggesting that this mechanism was unlikely to be responsible for conversion of l-serine to d-serine. Abstraction of the alpha proton may account for the majority of racemisation of serine in proteins.  相似文献   

14.
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.  相似文献   

15.
Asp-Thr-Met-Arg-Cys-Met-Val-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Glu-Val (melanin concentrating hormone, MCH) and several fragment analogs (MCH1-14, MCH5-17, MCH5-14) were synthesized and their biological activities determined in a very sensitive fish skin bioassay. The potency ranking and minimum effective doses of the peptides were determined to be: MCH1-17 (10(-12)M) greater than less than MCH5-17 (10(-12)M) greater than MCH1-14 (10(-11)M) greater than MCH5-14 (2 X 10(-10)M). The melanosome aggregating activity of MCH could be completely reversed by a 100-fold higher concentration of pounds-MSH. MCH was self-antagonized in a dose-related manner by higher concentrations of the peptide as was the activity of the MCH1-14 fragment analog. The MCH activities of the MCH5-17 and MCH5-14 analogs were not compromised by even the highest concentrations of the peptides employed. The MSH-like activity of MCH appears to relate to the N-terminus of the peptide whereas MCH activity is more a function of the C-terminus of the hormone. Self-antagonism of MCH at high concentrations appears to relate to the N-terminal tetrapeptide, which is responsible for the intrinsic MSH-like activity of the hormone.  相似文献   

16.
Thrombin and ADP-induced platelet aggregation are reversibly inhibited by pyridoxal phosphate. Sodium borohydride converts Schiff bases formed between pyridoxal phosphate and amino groups to covalent bonds. When platelets treated with sodium borohydride and pyridoxal phosphate are resuspended in fresh platelet-poor plasma, they recover their response to thrombin, but not to ADP. Thus Schiff base formation between pyridoxal phosphate and platelet surface amino groups does not block thrombin aggregation. The loss of thrombin potency as an aggregating agent is due to interaction between pyridoxal phosphate and thrombin. This is evidenced by spectrophometric determination of adduct formation and loss of hydrolytic action on p-tosyl-L-arginine methyl ester.  相似文献   

17.
Transglutaminase (TGase) from Streptomyces mobaraensis is secreted as a precursor protein which is completely activated by the endoprotease TAMEP, a member of the M4 protease family [Zotzel, J., Keller, P. & Fuchsbauer, H.-L. (2003) Eur. J. Biochem. 270, 3214-3222]. In contrast with the mature enzyme, TAMEP-activated TGase exhibits an additional N-terminal tetrapeptide (Phe-Arg-Ala-Pro) suggesting truncation, at least, by a second protease. We have now isolated from the culture broth of submerged colonies a tripeptidyl aminopeptidase (SM-TAP) that is able to remove the remaining tetrapeptide. The 53-kDa peptidase was purified by ion-exchange and phenyl-Sepharose chromatography and subsequently characterized. Its proteolytic activity was highest against chromophoric tripeptides at pH 7 in the presence of 2 mm CaCl2. EDTA and EGTA (10 mm) both diminished the proteolytic activity by half. Complete inhibition was only achieved with 1 mm phenylmethanesulfonyl fluoride, suggesting that SM-TAP is a serine protease. Alignment of the N-terminal sequence confirmed its close relation to the Streptomyces TAPs. That removal of Phe-Arg-Ala-Pro from TAMEP-activated TGase by SM-TAP occurs in a single step was confirmed by experiments using various TGase fragments and synthetic peptides. SM-TAP was also capable of generating the mature N-terminus by cleavage of RAP-TGase. However, AP-TGase remained unchanged. As SM-TAP activity against chromophoric amino acids such as Pro-pNA or Phe-pNA could not be detected, the tetrapeptide of TAMEP-activated TGase must be removed without formation of an intermediate.  相似文献   

18.
Recently a thrombin receptor with a unique mechanism of activation was cloned from a megakaryocyte-like cell line (Vu et al., Cell 64:1057-1068, 1991). Thrombin cleaves a portion of this receptor creating a new N-terminus that acts as a "tethered-ligand" to activate the receptor. A thrombin receptor activating peptide (SFLLRNPNDKYEPF) homologous to the new N-terminus was shown to activate platelets. We synthesized this peptide and demonstrated that it desensitized platelets to activation by low concentrations of alpha-thrombin but not gamma-thrombin. We also synthesized a thrombin exosite inhibitor (BMS 180742) that inhibited platelet aggregation induced by low, but not high, concentrations of alpha-thrombin. In contrast, a thrombin active site inhibitor, N alpha-(2-naphthylsulfonyl-glycyl)-D,L-amidinophenylalanylpiperi dide, competitively inhibited thrombin-induced platelet aggregation. We conclude that thrombin-induced platelet activation is mediated by at least two pathways: one activated by low concentrations of alpha-thrombin and blocked by a thrombin exosite inhibitor that appears to be coupled to the "tethered-ligand" thrombin receptor, and another that is stimulated by higher concentrations of alpha-thrombin and by gamma-thrombin and does not require the thrombin exosite for activation. Both pathways are blocked by a thrombin active site inhibitor.  相似文献   

19.
Type III collagen binding protein (TIIICBP) was previously described as a platelet membrane protein that recognizes the KOGEOGPK peptide sequence within type III collagen. In order to better characterize this protein, we performed different approaches including mass spectrometry sequencing and functional experiments. This study leads to identify high biochemical and functional similarities between TIIICBP and kindlin-3, a member of a family of focal adhesion proteins. Indeed, mass spectrometry surveys indicated that TIIICBP contains several peptides identical to kindlin-3, covering 41% of the amino acid sequence. Polyclonal antibodies raised against a kindlin-3 specific N-terminal sequence, recognized and immunoprecipitated TIIICBP from platelet lysates. Electron microscopy and flow cytometry experiments showed that kindlin-3, as well as TIIICBP, were present associated to platelet membrane and a translocation of cytosolic kindlin-3 to the platelet membrane was observed after platelet activation. Similarly to anti-TIIICBP antibodies and the KOGEOGPK peptide, anti-kindlin-3 antibodies inhibited platelet interactions with type III collagen under flow conditions and slowed down platelet aggregation induced by glycoprotein VI agonists; e.g. collagen-related peptides and convulxin. In addition, the anti-kindlin-3 antibody inhibited platelet aggregation induced by low - but not high - doses of ADP or thrombin which depends on α(IIb)β(3) integrin function. In conclusion, our results show that the peptides identified by mass spectrometry from purified TIIICBP correspond to the kindlin-3 protein and demonstrate biochemical and functional similarities between TIIICBP and kindlin-3, strengthening a key role for TIIICBP/kindlin-3 in platelet interactions with collagen by cooperating with glycoprotein VI activation and integrin clustering in focal adhesion complexes.  相似文献   

20.
Summary Thrombin, the most potent physiological platelet agonist interacts with cells through a specific G protein-coupled receptor which has been cloned and sequenced. Synthetic thrombin receptor peptides (TRAPS) comprising the first 5 amino acids (SFLLR and SFLLR-NH2) of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity were found to cause full platelet aggregation. During the screening of novel thrombin receptor derived non-peptide mimetics in the platelet aggregation assay we found that 1-phenylacetyl-4-(6-guanidohexanoyl)-piperazine (1) and 1-(6-guanidohexanoyl)-4-(phenylacetylamidomethyl)-piperidine (2) exertedin vitro antagonist activities (56% and 40% correspondingly) as it is depicted by the platelet aggregation assay. Using Molecular Modeling, the synthetic compounds were overlayed with SFFLR. All three superimposed low energy structures had Phe and Arg aminoacids in spatial close proximity. The superimposition results revealed that1 resembled more the stereoelectronic environment of SFLLR than2. This difference may be related to their different antagonist efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号