首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

2.
3.
Introns are flanked by a partially conserved coding sequence that forms the immediate exon junction sequence following intron removal from pre-mRNA. Phylogenetic evidence indicates that these sequences have been targeted by numerous intron insertions during evolution, but little is known about this process. Here, we test the prediction that exon junction sequences were functional splice sites that existed in the coding sequence of genes prior to the insertion of introns. To do this, we experimentally identified nine cryptic splice sites within the coding sequence of actin genes from humans, Arabidopsis, and Physarum by inactivating their normal intron splice sites. We found that seven of these cryptic splice sites correspond exactly to the positions of exon junctions in actin genes from other species. Because actin genes are highly conserved, we could conclude that at least seven actin introns are flanked by cryptic splice sites, and from the phylogenetic evidence, we could also conclude that actin introns were inserted into these cryptic splice sites during evolution. Furthermore, our results indicate that these insertion events were dependent upon the splicing machinery. Because most introns are flanked by similar sequences, our results are likely to be of general relevance.  相似文献   

4.
5.
Two nonallelic porcine class I MHC (SLA) genes have been isolated and characterized. Both genes are expressed in mouse L cells, directing the synthesis of class I SLA molecules that carry common monomorphic determinants but are serologically distinct. The corresponding DNA sequences have been determined. The organization of both of these genes is similar to that of other class I genes: a leader exon, three exons encoding extracellular domains, a transmembrane exon, and three intracytoplasmic exons. The two genes are highly homologous in both exon and intron segments, with average homologies of 88% and 80%, respectively. Nucleotide changes in exon 2 are clustered, whereas those in the other exons are dispersed throughout. Comparison of the swine DNA sequences with class I genes from other species reveals a generally high conservation of exons 2, 3, 4, and 6 with lower homology in the remaining protein-encoding domains. Introns are markedly less well conserved, although moderate homology is found between swine and human class I MHC genes in both introns and 3' flanking regions. Taken together with comparisons of the deduced protein sequences, these data indicate an order of swine greater than human greater than rabbit greater than mouse in the relationship of class I genes.  相似文献   

6.
The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved.  相似文献   

7.
The overlapping ND4L and ND5 genes of Neurospora crassa mitochondria are interrupted by one and two intervening sequences, respectively, of about 1,490, 1,408 and 1,135 bp in length. All three intervening sequences are class I introns and as such have the potential to fold into the conserved secondary structure that has been proposed for the majority of fungal mitochondrial introns. They contain long open reading frames (ORFs; from 306 to 425 codons long) that are continuous and in frame with the upstream exon sequences. These ORFs contain the conserved decapeptide-encoding sequences that are characteristic of the ORFs present in most class I introns. Extensive homology exists among the ORFs encoded by the ND4L intron, ND5 intron 1, and the second intron of the N. crassa oli2 gene. Also, internal repeats of about 130 amino acid residues are present twice in each of these three ORFs, suggesting that a duplication event may have occurred in the formation of these ORFs. The ND4L intron shares extensive homology (at the levels of both primary and proposed secondary structures) with the self-splicing intervening sequence present in the Tetrahymena nuclear rRNA gene. This homology includes but is not limited to the core secondary structure, as peripheral structural elements are also conserved in the two introns.  相似文献   

8.
9.
10.
Concerted and divergent evolution within the rat gamma-crystallin gene family   总被引:11,自引:0,他引:11  
The nucleotide sequences of six rat gamma-crystallin genes have been determined. All genes have the same mosaic structure: the first exons contain a relatively short (25 to 44 base-pair) 5' non-coding region and the first nine base-pairs of the coding sequence, the second exons encode protein motifs I and II, while protein motifs III and IV are encoded by the third exons. The third exons also contain a 60 to 67-base-pair long 3' non-coding region. In the gamma 1-2 gene, the splice acceptor site of the third exon has been shifted three base-pairs upstream. Hence, the protein product of this gene is one amino acid residue longer. The first introns, though varying in length from 85 to 100 base-pairs, are conserved in sequence. The second introns vary considerably in length (0.9 X 10(3) to 1.9 X 10(3) base-pairs) and sequence. The second exons of the genes show concerted evolution and have undergone multiple gene conversions. In contrast, the third exons show divergent evolution. From the sequences of the third exons, an evolutionary tree of the gene family was constructed. This tree suggests that three of the present genes derive directly from the genes that originated from a tandem duplication of a two-gene cluster. Two duplications of the last gene of the four-gene cluster then yielded the other three genes. Region a' of the third exon, encoding protein motif III, is variable, while the region encoding protein motif IV (b') is constant. We postulate that this variability in region a' is due to a period of radiation after each gene duplication. A comparison of the rat sequences with those of orthologous sequences from other species shows that the variation in region a' is now preserved. Hence, it might specify the specific functional property of each gamma-crystallin protein within the lens.  相似文献   

11.
The DNA sequence of the cob region of the Schizosaccharomyces pombe mitochondrial DNA has been determined. The cytochrome b structural gene is interrupted by an intron of 2526 base-pairs, which has an open reading frame of 2421 base-pairs in phase with the upstream exon. The position of the intron differs from those found in the cob genes of Saccharomyces cerevisiae, Aspergillus nidulans or Neurospora crassa. The Sch. pombe cob intron has the potential of assuming an RNA secondary structure almost identical to that proposed for the first two cox1 introns (group II) in S. cerevisiae and the p1-cox1 intron in Podospora anserina. It has most of the consensus nucleotides in the central core structure described for this group of introns and its comparison with other group II introns allows the identification of an additional conserved nucleotide stretch. A comparison of the predicted protein sequences of group II intronic coding regions reveals three highly conserved blocks showing pairwise amino acid identities of 34 to 53%. These regions comprise over 50% of the coding length of the intron but do not include the 5' region, which has strong secondary structural features. In addition to the potential intron folding, long helical structures involving repetitive sequences can be formed in the flanking cob exon regions. A comparison of the Sch. pombe cytochrome b sequence with those available from other organisms indicates that Sch. pombe is evolutionarily distant from both budding yeasts and filamentous fungi. As was seen for the Sch. pombe cox1 gene (Lang, 1984), the cob exons are translated using the universal genetic code and this distinguishes Sch. pombe mitochondria from all other fungal and animal mitochondrial systems.  相似文献   

12.
13.
Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula, genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Introns interrupt most of the conserved kinase subdomains I-XI and are found in all three phases (0, 1 and 2). We analyzed in details p38 and JNK genes from human, Caenorhabditis elegans and Drosophila melanogaster and found in most genes introns at the positions identical to those in sponge genes. The exceptions are two p38 genes from D. melanogaster that have lost all introns in the coding sequence. The positions of 11 introns in each of four human p38 genes are fully conserved and ten introns occupy identical positions as the introns in sponge p38 or JNK genes. The same is true for nine, out of ten introns in the human JNK-1 gene. The introns in human p38 and JNK genes are on average more than ten times longer than corresponding introns in sponges. It was proposed that yeast HOG1-like kinases (from i.e. Saccharomyces cerevisiae and Emericella nidulans) and metazoan p38 and JNK kinases are orthologues. p38 and JNK genes were created after the split from fungi by the duplication and diversification of the HOG1-like progenitor gene. Our results further support the common origin of p38 and JNK genes and speak in favor of a very early time of duplication. The ancestral gene contained at least ten introns, which are still present at the very conserved positions in p38 and JNK genes of extant animals. Four of these introns are present at the same positions in the HOG-like gene in the fungus E. nidulans. The others probably entered the ancestral gene after the split of fungi, but before the duplication of the gene and before the creation of the common, urmetazoan progenitor of all multicellular animals. A second gene coding for an immune molecule is described, the allograft inflammatory factor, which likewise showed a highly conserved exon/intron structure in S. domuncula and in human. These data show that the intron/exon borders are highly conserved in genes from sponges to human.  相似文献   

14.
15.
16.
The complete nucleotide sequence of an HLA-DP beta 1 gene and part of the adjacent DP alpha 1 gene, up to and including the signal sequence exon, were determined. The sequence of the DP beta 1 gene identified it as the DPw4 allele. The six exons of the DP beta 1 gene spanned over 11,000 bp of sequence. The arrangement of the gene was broadly analogous to genes of other class II beta chains. The beta 1 exon was flanked by introns of over 4 kb. Comparisons with published sequences of cDNA clones indicated that an alternative splice junction, at the 3' end of the gene, is used in at least one allele. Variation in choice of splice junction indicates an additional mechanism for allelic variation in class II genes. The sequence also indicated that the DP beta 1 and DP alpha 1 genes are separated by only 2 kb at their 5' ends. Comparison of the 5' ends of the DP alpha 1 and beta 1 genes with other class II sequences, including the DZ alpha gene, showed conservation of several blocks of sequences thought to be involved in control of expression. Some areas of the introns were partially conserved in the DQ beta gene, and several other intron sequences were homologous to sequences found in other unrelated genes.  相似文献   

17.
18.
Virtually all pre-mRNA introns begin with the sequence /GU and end with AG/ (where / indicates a border between an exon and an intron). We have previously shown that the G residues at the first and last positions of the yeast actin intron interact during the second step of splicing. In this work, we ask if other highly conserved intron nucleotides also take part in this /G-G/ interaction. Of special interest is the penultimate intron nucleotide (AG/), which is important for the second step of splicing and is in proximity to other conserved intron nucleotides. Therefore, we tested interactions of the penultimate intron nucleotide with the second intron nucleotide (/GU) and with the branch site nucleotide. We also tested two models that predict interactions between sets of three conserved intron nucleotides. In addition, we used random mutagenesis and genetic selection to search for interactions between nucleotides in the pre-mRNA. We find no evidence for other interactions between intron nucleotides besides the interaction between the first and last intron nucleotides.  相似文献   

19.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号