首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nematodes form an important component of many benthic marine ecosystems and DNA barcoding approaches could provide an insight into nematode community composition from different environments globally. We have amplified nematode 18S rRNA sequences using standard nematode18S rRNA primers from environmental DNA extracted from intertidal sediment collected from New Jersey coast, USA to test whether the published marine nematode 18S rRNA sequences from GenBank and EMBL databases can effectively assign unknown nematode sequences into genus or species level. Most of the sequenced clones showed some degree of identities with published marine nematode 18S rRNA sequences. However, relatively very few of the sequences could be assigned even to genus level based on sequence assignment rule. In addition, other eukaryotic 18S rRNA sequences were found to be co-amplified with commonly used nematode 18S rRNA primers. We found that the majority of the current nematode 18S rRNA primers will co-amplify other eukaryotes if environmental DNA is the target template. We therefore designed a new set of nematode 18S rRNA primers and evaluated them using environmental DNA in intertidal sediment from the New Jersey coast. In total, 40 clones were screened and subsequently sequenced and all the sequences showed varying degree of identities with published nematode 18S rRNA sequences from GenBank and EMBL databases, and no obvious eukaryotic co-amplicons were detected with new primers. Only 13 out of 40 clones amplified with the new primer set showed 100% identity to published Daptonema and Metachromadora 18S rRNA sequences. The current molecular databases for nematodes are dominated by sequences from NW Europe and need to be more extensively populated with new full length 18S rRNA nematode sequences collected from different biogeographic locations. The new primers developed in this study, in combination with an updated nematode 18S rRNA sequence database, would help us to better investigate and understand the diversity and community composition of free-living marine nematodes based on DNA barcoding approaches during biodiversity or biomonitoring surveys on a global-scale.  相似文献   

2.
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.  相似文献   

3.
The cryptomonad Rhinomonas nottbecki n. sp., isolated from the Baltic Sea, is described from live and fixed cells studied by light, scanning, and transmission electron microscopy together with sequences of the partial nucleus‐ and nucleomorph‐encoded 18S rRNA genes as well as the nucleus‐encoded ITS1, 5.8S, ITS2, and the 5′‐end of the 28S rRNA gene regions. The sequence analyses include comparison with 43 strains from the family Pyrenomonadaceae. Rhinomonas nottbecki cells are dorsoventrally flattened, obloid in shape; 10.0–17.2 μm long, 5.5–8.1 μm thick, and 4.4–8.8 μm wide. The inner periplast has roughly hexagonal plates. Rhinomonas nottbecki cells resemble those of Rhinomonas reticulata, but the nucleomorph 18S rRNA gene of R. nottbecki differs by 2% from that of R. reticulata, while the ITS region by 11%. The intraspecific variability in the ITS region of R. nottbecki is 5%. In addition, the predicted ITS2 secondary structures are different in R. nottbecki and R. reticulata. The family Pyrenomonadaceae includes three clades: Clade A, Clade B, and Clade C. All Rhinomonas sequences branched within the Clade C, while the genus Rhodomonas is paraphyletic. The analyses suggest that the genus Storeatula is an alternating morphotype of the genera Rhinomonas and Rhodomonas and that the family Pyrenomonadaceae includes some species that were described multiple times, as well as novel species.  相似文献   

4.
Diplonemids are considered marine protists and have been reported among the most abundant and diverse eukaryotes in the world oceans. Recently we detected the presence of freshwater diplonemids in Japanese deep freshwater lakes. However, their distribution and abundances in freshwater ecosystems remain unknown. We assessed abundance and diversity of diplonemids from several geographically distant deep freshwater lakes of the world by amplicon-sequencing, shotgun metagenomics and catalysed reporter deposition-fluorescent in situ hybridization (CARD-FISH). We found diplonemids in all the studied lakes, albeit with low abundances and diversity. We assembled long 18S rRNA sequences from freshwater diplonemids and showed that they form a new lineage distinct from the diverse marine clades. Freshwater diplonemids are a sister-group to a marine clade, which are mainly isolates from coastal and bay areas, suggesting a recent habitat transition from marine to freshwater habitats. Images of CARD-FISH targeted freshwater diplonemids suggest they feed on bacteria. Our analyses of 18S rRNA sequences retrieved from single-cell genomes of marine diplonemids show they encode multiple rRNA copies that may be very divergent from each other, suggesting that marine diplonemid abundance and diversity both have been overestimated. These results have wider implications on assessing eukaryotic abundances in natural habitats by using amplicon-sequencing alone.  相似文献   

5.
A new marine myxosporean species, Ceratomyxa aegyptiaca n. sp. is described from the gall-bladder of Solea aegyptiaca Chabanaud collected from the Ghar El Melh Lagoon in northeastern Tunisia. Mature spores are elongate and crescent-shaped, measuring 8-11?μm in length and 48-58?μm in width. The polar capsules are spherical, 3.2-4?μm in diameter and equal in size. Trophozoites are polysporous and float free in the bile or are attached on the epithelium of the gall-bladder. Morphological data and molecular analysis based on 18S rDNA sequences are provided. The 18S rDNA of C. aegyptiaca is readily distinguishable from that of other myxozoan species, as the genetically most similar myxozoan parasite, C. seriolae Yokoyama & Fukuda, 2001 (AB530265) collected from Seriola quinqueradiata Temminck & Schlegel in Japanese waters, shares with it only 67.5% identical nucleotides over a 1,680-bp long fragment of 18S rDNA.  相似文献   

6.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

7.
A 16S rRNA genus-specific probe was used to determine whether Streptomyces populations are an indigenous component of marine sediment bacterial communities. Previous debates have suggested that marine Streptomyces isolates are derived not from resident populations but from spores of terrestrial species which have been physically transported to marine ecosystems but remain dormant until isolation. Rigorously controlled hybridization of rRNA extracted from coastal marsh sediments with the genus-specific probe indicated that Streptomyces rRNA accounted for 2 to 5% of the sediment community rRNA and that spores are not the source of the hybridization signal. Streptomyces populations must therefore be at least the 26th most abundant genus-level source of bacterial rRNA. the relative amounts of rRNAs from Streptomyces spp. and members of the Bacteria (69 to 79%) and Archaea (4 to 7%) domains were highly consistent in these marine sediments throughout an annual cycle, indicating that the species composition of sediment bacterial communities may be more stable than recent studies suggest for marine planktonic bacterial communities. Laboratory studies designed to investigate the possible functional roles of Streptomyces populations in coastal sediments demonstrated that population levels of this genus changed relatively rapidly (within a time frame of 6 weeks) in response to manipulation of substrate availability. Amendments of intact sediment cores with two compounds (vanillic acid and succinic acid) consistently resulted in Streptomyces populations contributing an increased percentage of rRNA (6 to 15%) to the total bacterial rRNA pool.  相似文献   

8.
The phylogeny, abundance, and biogeography of the NOR5/OM60 clade was investigated. This clade includes “Congregibacter litoralis” strain KT71, the first cultured representative of marine aerobic anoxygenic phototrophic Gammaproteobacteria. More than 500 16S rRNA sequences affiliated with this clade were retrieved from public databases. By comparative sequence analysis, 13 subclades could be identified, some of which are currently restricted to discrete habitat types. Almost all sequences in the largest subclade NOR5-1 and related subclade NOR5-4 originated from marine surface water samples. Overall, most of the NOR5/OM60 sequences were retrieved from marine coastal settings, whereas there were fewer from open-ocean surface waters, deep-sea sediment, freshwater, saline lakes and soil.  相似文献   

9.
A new Heterorhabditis species of entomopathogenic nematode was isolated from soil of the Atacama Desert in Chile. The new species is characterized by morphometrics of the infective juvenile (IJ) with length (L)?=?611 (578-666)?μm, head to excretory pore length (EP)?=?115 (101-126)?μm, tail?=?69 (62-79)?μm long, (EP/tail)?×?100 (E%)?=?165 (149-182) and L/maximum body diameter (ratio a)?=?28 (25-31). The male has spicules 45 (40-49)?μm long, gubernaculum 20 (17-22)?μm long and (spicule length/anal body diameter)?×?100 (SW%)?=?205 (179-249). The hermaphroditic adult has shallow cuticular folds immediately anterior and posterior to the vulva, a slight post-anal swelling and a finely rounded tail terminus. Morphologically, H. atacamensis n. sp. resembles H. safricana, H. marelatus, H. downesi and H. amazonensis, but can be distinguished by characters of adult and IJ stages. In particular, for adult males, H. atacamensis n. sp. differs from H. amazonensis by the number and orientation of the genital papillae and from H. downesi by the position of the excretory pore; by the shape of the female tail terminus from H. downesi and by the position of the IJ hemizonid from H. marelatus. Heterorhabditis atacamensis n. sp. is further characterized by internal transcribed spacer (ITS) and D2D3 rDNA sequences, the closest species, H. safricana, being separated by 13?bp across 730?bp of the ITS (incorporating ITS1 (partial sequence), 5.8S (complete sequence), ITS2 (complete sequence)) and 5?bp across 592?bp of the partial 28S (incorporating D2D3) sequence. The morphological and molecular data confirm that H. atacamensis n. sp. is a valid species.  相似文献   

10.
Highly conserved sequences present at an identical position near the 3' ends of eukaryotic and prokaryotic 5S rRNAs are complementary to the 5' strand of the m2(6)A hairpin structure near the 3' ends of 18S rRNA and 16S rRNA, respectively. The extent of base-pairing and the calculated stabilities of the hybrids that can be constructed between 5S rRNAs and the small ribosomal subunit RNAs are greater than most, if not all, RNA-RNA interactions that have been implicated in protein synthesis. The existence of complementary sequences in 5S rRNA and small ribosomal subunit RNA, along with the previous observation that there is very efficient and selective hybridization in vitro between 5S and 18S rRNA, suggests that base-pairing between 5S rRNA in the large ribosomal subunit and 18S (16S) rRNA in the small ribosomal subunit might be involved in the reversible association of ribosomal subunits. Structural and functional evidence supporting this hypothesis is discussed.  相似文献   

11.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. Two amphizoic amoebae Neoparamoeba pemaquidensis and Neoparamoeba branchiphila have been cultured from AGD-affected fish, yet it is not known if one or both are aetiological agents. Here, we PCR amplified the 18S rRNA gene of non-cultured, gill-derived (NCGD) amoebae from AGD-affected Atlantic salmon (Salmo salar) using N. pemaquidensis and N. branchiphila-specific oligonucleotides. Variability in PCR amplification led to comparisons of 18S rRNA and 28S rRNA gene sequences from NCGD and clonal cultured, gill-derived (CCGD) N. pemaquidensis and N. branchiphila. Phylogenetic analyses inferred from either 18S or 28S rRNA gene sequences unambiguously segregated a lineage consisting of NCGD amoebae from other members of the genus Neoparamoeba. Species-specific oligonucleotide probes that hybridise 18S rRNA were designed, validated and used to probe gill tissue from AGD-affected Atlantic salmon. The NCGD amoebae-specific probe bound AGD-associated amoebae while neither N. pemaquidensis nor N. branchiphila were associated with AGD-lesions. Together, these data indicate that NCGD amoebae are a new species, designated Neoparamoeba perurans n.sp. and this is the predominant aetiological agent of AGD of Atlantic salmon cultured in Tasmania, Australia.  相似文献   

12.
13.
Intermolecular hybridization experiments show that murine 18S rRNA and 28S rRNA are capable of forming stable hybrid structures with mRNA from genes p53, c-myc and c-mos from the same species. Both 5'-uncoding and coding oncogene p53 mRNA regions contain fragments interacting with rRNA. Computer analysis revealed 18S rRNA fragments complementary to oligonucleotides frequently met in mRNA, which are potential hybridization regions (clinger-fragments). The distribution of clinger-fragments along 18S rRNA sequence is universal at least for one hundred murine mRNA sequences analyzed. Maximal frequencies of oligonucleotides complementary to 18S rRNA clinger-fragments are reliably (2-3 times) higher for mRNA than for intron sequences and randomly generated sequences. The results obtained suggest a possible role of clinger-fragments in translation processes as universal regions of mRNA binding.  相似文献   

14.
The rDNA of eukaryotic organisms is transcribed as the 40S-45S rRNA precursor, and this precursor contains the following segments: 5' - ETS - 18S rRNA - ITS 1 - 5.8S rRNA - ITS 2 - 28S rRNA - 3'. In amphibians, the nucleotide sequences of the rRNA precursor have been completely determined in only two species of Xenopus. In the other amphibian species investigated so far, only the short nucleotide sequences of some rDNA fragments have been reported. We obtained a genomic clone containing the rDNA precursor from the Japanese pond frog Rana nigromaculata and analyzed its nucleotide sequence. The cloned genomic fragment was 4,806 bp long and included the 3'-terminus of 18S rRNA, ITS 1, 5.8S rRNA, ITS 2, and a long portion of 28S rRNA. A comparison of nucleotide sequences among Rana, the two species of Xenopus, and human revealed the following: (1) The 3'-terminus of 18S rRNA and the complete 5.8S rRNA were highly conserved among these four taxa. (2) The regions corresponding to the stem and loop of the secondary structure in 28S rRNA were conserved between Xenopus and Rana, but the rate of substitutions in the loop was higher than that in the stem. Many of the human loop regions had large insertions not seen in amphibians. (3) Two ITS regions had highly diverged sequences that made it difficult to compare the sequences not only between human and frogs, but also between Xenopus and Rana. (4) The short tracts in the ITS regions were strictly conserved between the two Xenopus species, and there was a corresponding sequence for Rana. Our data on the nucleotide sequence of the rRNA precursor from the Japanese pond frog Rana nigromaculata were used to examine the potential usefulness of the rRNA genes and ITS regions for evolutionary studies on frogs, because the rRNA precursor contains both highly conserved regions and rapidly evolving regions.  相似文献   

15.
Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of this huge eukaryotic group. Multiple protein sequences will be needed fully to resolve basal bikont phylogeny. Nonetheless, our results suggest that combined SSU+LSU rDNA phylogenies can help to resolve several ambiguous regions of the eukaryotic tree and identify key taxa for subsequent multi-gene analyses.  相似文献   

16.
Haptophyta encompasses more than 300 species of mostly marine pico‐ and nanoplanktonic flagellates. Our aims were to investigate the Oslofjorden haptophyte diversity and vertical distribution by metabarcoding, and to improve the approach to study haptophyte community composition, richness and proportional abundance by comparing two rRNA markers and scanning electron microscopy (SEM). Samples were collected in August 2013 at the Outer Oslofjorden, Norway. Total RNA/cDNA was amplified by haptophyte‐specific primers targeting the V4 region of the 18S, and the D1‐D2 region of the 28S rRNA. Taxonomy was assigned using curated haptophyte reference databases and phylogenetic analyses. Both marker genes showed Chrysochromulinaceae and Prymnesiaceae to be the families with highest number of Operational Taxonomic Units (OTUs), as well as proportional abundance. The 18S rRNA data set also contained OTUs assigned to eight supported and defined clades consisting of environmental sequences only, possibly representing novel lineages from family to class. We also recorded new species for the area. Comparing coccolithophores by SEM with metabarcoding shows a good correspondence with the 18S rRNA gene proportional abundances. Our results contribute to link morphological and molecular data and 28S to 18S rRNA gene sequences of haptophytes without cultured representatives, and to improve metabarcoding methodology.  相似文献   

17.
The chromosomal locations of the 18S + 28S and 5S ribosomal RNA genes have been analyzed by in situ hybridization in ten anuran species of different taxonomic positions. The chosen species belong to both primitive and evolved families of the present day Anura. Each examined species has 18S + 28S rRNA genes clustered in one locus per haploid chromosome set: this locus is placed either in an intercalary position or proximal to the centromere, or close to the telomere. The 5S rRNA genes are arranged in clusters which vary in number from one to six per haploid set. The 5S rDNA sites are found in intercalary positions, at the telomeres, and at, or close to, the centromeres. Microchromosomes and small chromosomes in primitive karyotypes have been found to carry 5S rDNA sequences. The results are discussed in relation to ideas on the karyological evolution of Amphibia.  相似文献   

18.
Published polymerase chain reaction primer sets for detecting the genes encoding 16S rRNA gene and hydrazine oxidoreductase (hzo) in anammox bacteria were compared by using the same coastal marine sediment samples. While four previously reported primer sets developed to detect the 16S rRNA gene showed varying specificities between 12% and 77%, an optimized primer combination resulted in up to 98% specificity, and the recovered anammox 16S rRNA gene sequences were >95% sequence identical to published sequences from anammox bacteria in the Candidatus “Scalindua” group. Furthermore, four primer sets used in detecting the hzo gene of anammox bacteria were highly specific (up to 92%) and efficient, and the newly designed primer set in this study amplified longer hzo gene segments suitable for phylogenetic analysis. The optimized primer set for the 16S rRNA gene and the newly designed primer set for the hzo gene were successfully applied to identify anammox bacteria from marine sediments of aquaculture zone, coastal wetland, and deep ocean where the three ecosystems form a gradient of anthropogenic impact. Results indicated a broad distribution of anammox bacteria with high niche-specific community structure within each marine ecosystem.  相似文献   

19.
Crenarchaeota in Lake Michigan sediment.   总被引:27,自引:16,他引:11       下载免费PDF全文
RNA from Lake Michigan sediment was hybridized with a DNA probe for archaeal 16S rRNA. There was a peak of archaeal rRNA abundance in the oxic zone and another immediately below it. Six contributing species were identified by PCR amplification of extracted DNA with primers specific for archaeal rDNA: two related to Methanosarcina acetivorans and four related to marine crenarchaeotal sequences. rRNA quantification using a DNA probe specific for this crenarchaeotal assemblage showed it is most abundant in the oxic zone, where it accounts for about 10% of total archaeal rRNA.  相似文献   

20.
Two hypermodified, alkali-stable dinucleotide sequences, each containing a base modification in addition to sugar methylation, are known to be present in wheat embryo 26S + 18S rRNA (Gray, M.W. (1974) Biochemistry 13, 5453-5463). Quantitative analysis of unfractionated 26S + 18S rRNA had suggested that each of these sequences (Cm-psi p and psi m-Ap, where Cm=O2'-methylcytidine and psi m-O2'-methylpseudouridine) was present in either the 18S or the 26S rRNA species, but not the both, at a frequency of not more than once per chain. In the study reported here, the individual 32P-labeled 18S and 26S rRNA species were isolated from viable wheat embryos germinated in the presence of [32P]orthophosphate. From analyses of phosphodiesterase and alkaline hydrolysates of the separated [32P]RNAs, we conclude that psi m-Ap is confined to wheat cytosol 18S rRNA, whereas Cm-psi p is localized in wheat cytosol 26S rRNA. The presence of psi m in the 18S rRNA of wheat stands in contrast with the situation in animal cells, where this hypermodified nucleoside is located in the 28S rRNA (Khan, M.S.N. & Maden, B.E.H. (1976) J. Mol. Biol. 101, 235-254).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号