首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of binding of L-serine to tryptophan synthase, which is the initial phase of the catalytic mechanism, has been studied by steady-state and stopped-flow kinetic techniques. The dependence of three separable rate processes on the concentration of L-serine is compatible with four different enzyme-substrate complexes, one of which lies on a branch in the pathway. By use of L-serine deuterated at the alpha carbon, it is possible to assign the deprotonation of the external aldimine of L-serine with pyridoxal 5'-phosphate to the most rapid observable binding step. Measurements at two pH values show that the rate-determining step in the synthesis of L-tryptophan changes from release of L-tryptophan at the optimal pH of 7.6 to the binding of L-serine at pH 6.5. Measurements at pH 7.6 in the presence of the substrate analogue indolepropanol phosphate show that the stronger binding of L-serine is probably due to stabilization of the catalytically competent enzyme--L-serine complex. At pH 7.6 L-serine is bound far more slowly to the beta 2 subunit than to the alpha 2 beta 2 complex of tryptophan synthase and retains its alpha carbon proton. For the beta 2 subunit, the rate-determining step of tryptophan synthesis is deprotonation of bound L-serine. The effect of bound alpha subunit is to increase both the rate of deprotonation and beta-elimination, shifting the rate-limiting step to the release of L-tryptophan.  相似文献   

2.
Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase was studied. The tryptophan synthase (EC 4.2.1.20) of Escherichia coli catalyzed beta-substitution reaction of L-serine into L-tryptophan and the amino acid racemase (EC 5.1.1.10) of Pseudomonas putida catalyzed the racemization of D-serine simultaneously in one reactor. Under optimal conditions established for L-tryptophan production, a large-scale production of L-tryptophan was carried out in a 200-liter reactor using intact cells of E. coli and P. putida. After 24 h of incubation with intermittent indole feeding, 110 g liter-1 of L-tryptophan was formed in molar yields of 91 and 100% for added DL-serine and indole, respectively. Continuous production of L-tryptophan was also carried out using immobilized cells of E. coli and P. putida. The maximum concentration of L-tryptophan formed was 5.2 g liter-1 (99% molar yield for indole), and the concentration decreased to 4.2 g liter-1 after continuous operation for 20 days.  相似文献   

3.
It has been shown that yeast tryptophan synthase (L-serine hydro-lyase (adding indoleglycerol-phosphate) EC 4.2.1.20) catalyses tritium exchange reactions between protons on the alpha-carbon of L-serine of L-tryptophan, and water. The absolute rates of these reactions and indole-serine condensation (reaction B), all of which are pyridoxal phosphate-dependent, were measured. L-Serine exchange was resolved into two components, a high-affinity, slow, Michaelian reaction (KmS,H = 0.06 mM, kcats,H 3 X 10(-3) s-1) and a faster reaction (kcat greater than 2.5 S-1) which was not saturated even at 100 mM L-serine. Hydrogen exchange by tryptophan was a Michaelian process (KmT,H = 2.9 mM; kcatT,H = 0.6 s-1). Indole did not inhibit either exchange reaction. A plausible explanation of the results, that reaction B has a ping-pong mechanism with serine as first substrate and water and L-tryptophan as first and second products, respectively, was inadequate because of the observations that L-tryptophan is as first and second products, respectively, was inadequate because of the observations that L-tryptophan is synthesised with less than 1 mol of exchanged proton per mol amino acid, and that the ratio kcat/Km for serine changes between enzyme reactions. A branched modification with two enzyme-serine complexes, only one of which will exchange protons with water, will fit all the results.  相似文献   

4.
The mechanism by which indole condenses with L-serine in the active site of tryptophan synthase was studied by the stopped-flow technique. The single turnover occurs by rapid binding of indole to the pre-formed enzyme--L-serine complex, followed by C--C bond formation, reprotonation of the alpha carbon carbanion of L-tryptophan, and its final release. The effects of isotopic substitution at C-3 of indole, of pH, and of the presence of indolepropanol phosphate on these processes were also studied. The mechanism of binding of indole complements the known mechanisms of binding of L-serine and L-tryptophan to give a detailed picture of the mechanism of catalysis. It invokes two competent species of enzyme--L-serine complexes, leading to a branched pathway for the central condensation process. The rates of dehydration of L-serine and reprotonation of the carbanion of L-tryptophan are probably limited by rearrangements at the active site. Analysis of absorption, fluorescence and circular dichroic spectra, as well as of published data on the stereoisomers obtained by reduction with borohydride, suggests that the rearrangement includes a reorientation of the pyridoxal phosphate C-4' atom. The mechanism provides a detailed framework for explaining all available information, including the activating effect of the alpha subunit on the reaction catalyzed by the beta 2 subunit.  相似文献   

5.
The alpha subunit of the Escherichia coli tryptophan synthase catalyzes the reversible aldolytic reaction: Indole-3-glycerol phosphate in equilibrium indole + glyceraldehyde 3-phosphate. The use of 5-azidoindole as a photoaffinity label has made the generation of a number of enzyme-substrate complexes possible, each with a given degree of saturation of the two postulated indole sites. When assayed in the reverse reaction (indole-3-glycerol phosphate synthesis), samples of alpha subunit treated at concentrations of 5-azidoindole less than or equal to 2 mM show a progressive 30-40% activation. A gradual inactivation occurs only in samples irradiated at concentrations in excess of 2 mM 5-azidoindole, and this inactivation is complete at 8-10 mM. A quantitatively similar activation occurs in the forward reaction (indole synthesis), however inactivation in this case is incomplete, with complexes treated at 8-12 mM 5-azidoindole retaining 30-40% relative activity in this reaction. When treated alpha subunits were assayed for their abilities to complement the beta 2-subunit in the reactions indole + L-serine leads to L-tryptophan + H2O and indole-3-glycerol phosphate + L-serine leads to L-tryptophan + glyceraldehyde 3-phosphate, quantitatively lesser amounts of activation followed by total inactivation are observed over a similar range of 5-azidoindole concentrations.  相似文献   

6.
It is important to understand how the cleavage of indoleglycerol phosphate, which is catalyzed by the alpha subunits in the alpha 2 beta 2 bienzyme complex of tryptophan synthase, is modulated by the presence of L-serine in the beta subunits. Steady-state kinetic data, including the dependence of kcat on pH, allowed values to be assigned to each of the eight rate constants of the minimal catalytic mechanism. An ionizing group having an apparent pK value near 7.5 must be protonated for activity. The alpha active site ligands indolepropanol phosphate, glyceraldehyde 3-phosphate, and glycerol 3-phosphate increase both the affinity and the molar absorbance of L-serine and L-tryptophan bound to the beta active site. These effects prove that the alpha sites communicate with the beta sites over a distance of 30 A. 6-Nitroindole readily condenses with glyceraldehyde 3-phosphate, but not with L-serine. The turnover numbers for 6-nitroindoleglycerol phosphate and 6-nitroindole increased about 10-fold in both directions in the presence of L-serine bound to the beta 2 subunits. These data prove that the alpha and beta active sites communicate reciprocally and explain why the turnover number for the physiological reaction of indoleglycerol phosphate with L-serine greatly exceeds that of the cleavage reaction of indoleglycerol phosphate.  相似文献   

7.
Tryptophan synthase (TrpS) is a pyridoxal phosphate-containing bifunctional enzyme that catalyzes the last two steps in the biosynthesis of L-tryptophan. Indole, an intermediate generated at the active site of the alpha-subunit is channeled via a 25 A long tunnel to the beta-active site where it reacts with an aminoacrylate intermediate derived from L-serine. The two reactions are kept in phase by allosteric interactions between the two subunits. The recent development of novel alpha-site ligands and alpha-reaction transition state analogs combined with kinetic and crystal structure analysis of Salmonella typhimurium tryptophan synthase has provided new insights into the allosteric regulation of substrate channeling, the reaction mechanisms of the alpha and beta active sites, and the influence of structural dynamics.  相似文献   

8.
The bacterial tryptophan synthase bienzyme complexes (with subunit composition alpha 2 beta 2) catalyze the last two steps in the biosynthesis of L-tryptophan. For L-tryptophan synthesis, indole, the common metabolite, must be transferred by some mechanism from the alpha-catalytic site to the beta-catalytic site. The X-ray structure of the Salmonella typhimurium tryptophan synthase shows the catalytic sites of each alpha-beta subunit pair are connected by a 25-30 A long tunnel [Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., & Davies, D. R. (1988) J. Biol. Chem. 263, 17857-17871]. Since the S. typhimurium and Escherichia coli enzymes have nearly identical sequences, the E. coli enzyme must have a similar tunnel. Herein, rapid kinetic studies in combination with chemical probes that signal the bond formation step between indole (or nucleophilic indole analogues) and the alpha-aminoacrylate Schiff base intermediate, E(A-A), bound to the beta-site are used to investigate tunnel function in the E. coli enzyme. If the tunnel is the physical conduit for the transfer of indole from the alpha-site to the beta-site, then ligands that block the tunnel should also inhibit the rate at which indole and indole analogues from external solution react with E(A-A). We have found that when D,L-alpha-glycerol 3-phosphate (GP) is bound to the alpha-site, the rate of reaction of indole and nucleophilic indole analogues with E(A-A) is strongly inhibited. These compounds appear to gain access to the beta-site via the alpha-site and the tunnel, and this access is blocked by the binding of GP to the alpha-site. However, when small nucleophiles such as hydroxylamine, hydrazine, or N-methylhydroxylamine are substituted for indole, the rate of quinonoid formation is only slightly affected by the binding of GP. Furthermore, the reactions of L-serine and L-tryptophan with alpha 2 beta 2 show only small rate effects due to the binding of GP. From these experiments, we draw the following conclusions: (1) L-Serine and L-tryptophan gain access to the beta-site of alpha 2 beta 2 directly from solution. (2) The small effects of GP on the rates of the L-serine and L-tryptophan reactions are due to GP-mediated allosteric interactions between the alpha- and beta-sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Whole cells of Escherichia coli B 10 having high tryptophan synthetase activity were used directly as an enzyme source to produce L-tryptophan from indole and L- or D,L-serine. This strain is tryptophan auxotrophic, which is tryptophanase negative and, in addition, L- and D-serine deaminase negative under production conditions. To avoid inhibition of tryptophan synthetase by a high concentration of indole, nonaqueous organic solvents, Amberlite XAD-2 adsorbent, and nonionic detergents were used as reservoirs of indole in the reaction mixture for the production of L-tryptophan. As a result, different effects were observed on the production of L-tryptophan. Particularly, among the nonionic detergents, Triton X-100 was very efficient. Using Triton X-100 for production of L-tryptophan from indole and L- or D,L-serine by whole cells of Escherichia coli B 10, 14.14 g/100 mL and 14.2 g/100 mL of L-tryptophan were produced at 37 degrees C for 60 h.  相似文献   

10.
K Tanizawa  E W Miles 《Biochemistry》1983,22(15):3594-3603
Inactivation of the beta 2 subunit and of the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli by the arginine-specific dicarbonyl reagent phenylglyoxal results from modification of one arginyl residue per beta monomer. The substrate L-serine protects the holo beta 2 subunit and the holo alpha 2 beta 2 complex from both inactivation and arginine modification but has no effect on the inactivation or modification of the apo forms of the enzyme. This result and the finding that phenylglyoxal competes with L-serine in reactions catalyzed by both the holo beta 2 subunit and the holo alpha 2 beta 2 complex indicate that L-serine and phenylglyoxal both bind to the same essential arginyl residue in the holo beta 2 subunit. The apo beta 2 subunit is protected from phenylglyoxal inactivation much more effectively by phosphopyridoxyl-L-serine than by either pyridoxal phosphate or pyridoxine phosphate, both of which lack the L-serine moiety. The phenylglyoxal-modified apo beta 2 subunit binds pyridoxal phosphate and the alpha subunit but cannot bind L-serine or L-tryptophan. We conclude that the alpha-carboxyl group of L-serine and not the phosphate of pyridoxal phosphate binds to the essential arginyl residue in the beta 2 subunit. The specific arginyl residue in the beta 2 subunit which is protected by L-serine from modification by phenyl[2-14C]glyoxal has been identified as arginine-148 by isolating a labeled cyanogen bromide fragment (residues 135-149) and by digesting this fragment with pepsin to yield the labeled dipeptide arginine-methionine (residues 148-149). The primary sequence near arginine-148 contains three other basic residues (lysine-137, arginine-141, and arginine-150) which may facilitate anion binding and increase the reactivity of arginine-148. The conservation of the arginine residues 141, 148, and 150 in the sequences of tryptophan synthase from E. coli, Salmonella typhimurium, and yeast supports a functional role for these three residues in anion binding. The location and role of the active-site arginyl residues in the beta 2 subunit and in two other enzymes which contain pyridoxal phosphate, aspartate aminotransferase and glycogen phosphorylase, are compared.  相似文献   

11.
Tryptophanase, L-tryptophan indole-lyase with extremely absolute stereospecificity, can change the stereospecificity in concentrated diammonium hydrogenphosphate solution. While tryptophanase is not inert to D-serine in the absence of diammonium hydrogenphosphate, it can undergo L-tryptophan synthesis from D-serine along with indole in the presence of it. It has been well known that tryptophanase synthesizes L-tryptophan from L-serine through a β-substitution mechanism of the ping-pong type. However, a metabolic pathway of L-tryptophan synthesis from D-serine has remained unclear. The present study aims to elucidate it. Diammonium hydrogenphosphate plays a role in the emergence of catalytic activity on D-serine. The salt gives tryptophanase a small conformational change, which makes it possible to catalyze D-serine. Tryptophanase-bound D-serine produces L-tryptophan synthesis by β-replacement reaction via the enzyme-bound aminoacrylate intermediate. Our result will be valuable in studying the origin of homochirality.  相似文献   

12.
The addition of L-serine to inositol-containing growth medium repressed membrane-associated CDPdiacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) and phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activities and subunit levels in wild-type Saccharomyces cerevisiae. Enzyme activities and subunit levels were not repressed when inositol was absent from the growth medium. The addition of L-serine to the growth medium did not affect the phospholipid composition of wild-type cells. CDPdiacylglycerol synthase and phosphatidylserine synthase were not regulated in the S. cerevisiae inositol biosynthesis ino2, ino4, and opi1 regulatory mutants, suggesting that regulation by inositol plus L-serine is coupled to inositol synthesis. Inositol and L-serine did not affect the activities of purified CDPdiacylglycerol synthase and phosphatidylserine synthase. The addition of compounds structurally related to L-serine to the growth medium of wild-type cells also resulted in a repression of CDPdiacylglycerol synthase and phosphatidylserine synthase but only in the presence of inositol. Phosphatidylinositol synthase (CDPdiacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was not regulated by inositol plus L-serine.  相似文献   

13.
Summary A derivative ofEscherichia coli strain W3110 with increased tryptophan synthas (TS) activity was studied in the biosynthesis of L-tryptophan and 5-hydroxy-L-tryptophan, respectively, in presence of precursors. Indole or 5-hydroxyindole was added to growing cells in minimal medium supplemented with tetracycline. The specific activity of TS for 5-hydroxyindole was about 5-fold lower compared with indole. However, this difference in enzyme activity was not observed when the specific productivity (qp) of L-tryptophan or 5-hydroxy-L-tryptophan, which was 0.14–0.15 g (g dry wt cells)–1 · h–1 was determined. In minimal medium L-serine was shown to limit the production of both tryptophan and its hydroxylated derivative. In presence of L-serine, qp, for L-tryptophan and 5-hydroxy-L-tryptophan were increased by a factor of about 3 and 2, respectively.  相似文献   

14.
SYNOPSIS. A simple medium, consisting of riboflavin and a mixture of L-glutamic acid, L-tryptophan, L-isoleucine, L-serine, and L-proline has been shown to induce rapid and mass scale excystment in Schizopyrenus russelli. Whereas percentage excystment was found to depend on the concentration of riboflavin and amino acids, more than 80% of cysts were found to excyst within 4 hr, when adequate amounts of these were supplied. Several individual amino acids, particularly L-glutamic acid, L-tryptophan, and L-proline, also supported considerable excystment, but riboflavin was always indispensable.  相似文献   

15.
Morii H  Koga Y 《Journal of bacteriology》2003,185(4):1181-1189
CDP-2,3-di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) activity in cell extracts of Methanothermobacter thermautotrophicus cells was characterized. The enzyme catalyzed the formation of unsaturated archaetidylserine from CDP-unsaturated archaeol and L-serine. The identity of the reaction products was confirmed by thin-layer chromatography, fast atom bombardment-mass spectrum analysis, and chemical degradation. The enzyme showed maximal activity in the presence of 10 mM Mn2+ and 1% Triton X-100. Among various synthetic substrate analogs, both enantiomers of CDP-unsaturated archaeols with ether-linked geranylgeranyl chains and CDP-saturated archaeol with ether-linked phytanyl chains were similarly active toward the archaetidylserine synthase. The activity on the ester analog of the substrate was two to three times higher than that on the corresponding ether-type substrate. The activity of D-serine with the enzyme was 30% of that observed for L-serine. A trace amount of an acid-labile, unsaturated archaetidylserine intermediate was detected in the cells by a pulse-labeling experiment. A gene (MT1027) in M. thermautotrophicus genome annotated as the gene encoding phosphatidylserine synthase was found to be homologous to Bacillus subtilis pssA but not to Escherichia coli pssA. The substrate specificity of phosphatidylserine synthase from B. subtilis was quite similar to that observed for the M. thermautotrophicus archaetidylserine synthase, while the E. coli enzyme had a strong preference for CDP-1,2-diacyl-sn-glycerol. It was concluded that M. thermautotrophicus archaetidylserine synthase belongs to subclass II phosphatidylserine synthase (B. subtilis type) on the basis of not only homology but also substrate specificity and some enzymatic properties. The possibility that a gene encoding the subclass II phosphatidylserine synthase might be transferred from a bacterium to an ancestor of methanogens is discussed.  相似文献   

16.
Arginine 179 of the alpha subunit of tryptophan synthase of Salmonella typhimurium was changed to leucine by site-directed mutagenesis. The mutant alpha subunit was expressed in S. typhimurium, purified and crystallized as the alpha 2 beta 2 complex, and characterized by kinetic studies under steady-state reaction conditions. The rate of cleavage of indole 3-glycerol phosphate (alpha reaction) is reduced by 60% in the mutant alpha 2 beta 2 complex, whereas the rate of L-tryptophan synthesis from indole and L-serine (beta reaction) is unchanged. Thus, arginine 179 is not obligatory for catalysis, for binding of indole 3-glycerol phosphate, or for interaction of the alpha and beta 2 subunits. However, changing arginine 179 to leucine does have striking effects on ligand-dependent properties of this multienzyme complex. Ligands of the alpha subunit (DL-alpha-glycerophosphate and indole 3-propanol phosphate) which strongly inhibit the beta reaction of the native alpha 2 beta 2 complex have a slight stimulatory effect on the beta reaction of the mutant alpha 2 beta 2 complex. Likewise, L-serine, a ligand of the beta subunit which produces a 5-fold reduction in the Km for the alpha ligand indole 3-glycerol phosphate in the native alpha 2 beta 2 complex, has no effect on the mutant alpha 2 beta 2 complex. These results suggest that arginine 179 of the alpha subunit plays a role in the reciprocal transmission of substrate-induced conformational changes which occur between native alpha and beta 2 subunits in the alpha 2 beta 2 complex.  相似文献   

17.
A N Lane  K Kirschner 《Biochemistry》1991,30(2):479-484
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan.  相似文献   

18.
Basolateral amino acid transport systems have been characterized in the perfused exocrine pancreas using a high-resolution paired-tracer dilution technique. Significant epithelial uptakes were measured for L-alanine, L-serine, alpha-methylaminoisobutyric acid, glycine, methionine, leucine, phenylalanine, tyrosine and L-arginine, whereas L-tryptophan and L-aspartate had low uptakes. alpha-Methylaminoisobutyric acid transport was highly sodium dependent (81 +/- 3%), while uptake of L-serine, L-leucine and L-phenylalanine was relatively insensitive to perfusion with a sodium-free solution. Cross-inhibition experiments of L-alanine and L-phenylalanine transport by twelve unlabelled amino acids indicated overlapping specificities. Unidirectional L-phenylalanine transport was saturable (Kt = 16 +/- 1 mM, Vmax = 12.3 +/- 0.4 mumol/min per g), and weighted non-linear regression analysis indicated that influx was best described by a single Michaelis-Menten equation. The Vmax/Kt ratio (0.75) for L-phenylalanine remained unchanged in the presence of 10 mM L-serine. Although extremely difficult to fit, L-serine transport appeared to be mediated by two saturable carriers (Kt1 = 5.2 mM, Vmax1 = 7.56 mumol/min per g; Kt2 = 32.8 mM, Vmax2 = 22.9 mumol/min per g). In the presence of 10 mM L-phenylalanine the Vmax/Kt ratio for the two L-serine carriers was reduced, respectively, by 79% and 50%. Efflux of transported L-[3H]phenylalanine or L-[3H]serine was accelerated by increasing perfusate concentrations of, respectively, L-phenylalanine and L-serine, and trans-stimulated by other amino acids. In the pancreas neutral amino acid transport appears to be mediated by Na+-dependent Systems A and ASC, the classical Na+-independent System L and another Na+-independent System asc recently identified in erythrocytes. The interactions in amino acid influx and efflux may provide one of the mechanisms by which the supply of extracellular amino acids for pancreatic protein synthesis is regulated.  相似文献   

19.
Addition of individual amino acids to a Trypticase-yeast extract-hemin medium affected growth rates and final yields of an asaccharolytic strain and a saccharolytic strain of Bacteroides melaninogenicus. L-Aspartate or L-asparagine produced maximal growth enhancement for both strains. L-[14C]aspartate was fermented by resting cells of the asaccharolytic strain. L-Cysteine or L-serine also enhanced growth for the saccharolytic strain. However, growth of the saccharolytic strain was inhibited by L-lysine, L-glutamate, L-glutamine, L-isoleucine, L-leucine, and L-proline; growth of the asaccharolytic strain was inhibited by DL-valine and L-serine. Both strains were inhibited by L-histidine, DL-methionine, L-tryptophan, L-arginine, and glycine.  相似文献   

20.
Serine acetyltransferase (SATase) that catalyzes the conversionof L-serine to O-acetyl-L-serine (OAS) in the presence of acetyl-CoAwas highly purified from rape leaf extract, using a coupledassay system in which OAS is converted to cysteine by enzymaticaction of exogenous cysteine synthase. Through purificationprocedures including heat treatment, ammonium sulfate fractionationand successive column chromatographies on DEAE-Toypearl, Blue-Toyopearland Toyopearl HW-55, the specific activity was raised to about4,800-fold over that in the crude extract. The molecular weightof rape enzyme was estimated to be about 350,000 by gel filtrationcolumn chromatography. The cysteine-forming activity of thefinal preparation was completely dependent on L-serine, acetyl-CoAand sulfide. However, this preparation had low activity forL-cysteine synthesis from L-serine even in the absence of exogenouscysteine synthase, suggesting that plant SATase exists as ahigh-molecular weight enzyme complexed with cysteine synthase. (Received November 6, 1987; Accepted March 25, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号