首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brady SF 《Nature protocols》2007,2(5):1297-1305
Culture-independent studies on environmental samples indicate that most bacteria are not readily cultured in the laboratory. The small fraction of bacteria that have been successfully cultured from environmental samples have been a very rewarding source of novel biologically active natural products. The introduction of DNA extracted directly from environmental samples into easily cultured bacteria and the screening of these large libraries for clones that produce biologically active small molecules is one means to access natural products encoded by the genomes of previously uncultured bacteria. This protocol provides detailed procedures for cloning DNA directly from environmental samples and screening these clones for the production of antibacterially active natural products. The entire protocol, from soil sample to the identification of antibacterially active environmental DNA clones, will take approximately 2 weeks.  相似文献   

2.
A reasonably precise, reproducible, and sensitive microbiological procedure for directly assaying sulfacytine and other sulfonamides as antibacterially active drugs has been developed by appropriately modifying the standard disc-agar diffusion technique. Blood and urine levels as low as 3 mug/ml may be determined through the use of a strain of Escherichia coli and a chemically defined agar medium devoid of sulfonamide antagonists. Results indicate that this assay method should be a useful adjunct to the Bratton-Marshall colorimetric procedure, by permitting the direct measurement of antibacterially active drug in clinical specimens.  相似文献   

3.
In this review article, I will outline my way of thinking about biologically active small molecules. The structure of liposidomycin B from Streptomyces species resulted in my initial sense that a structure tells its function. A biologically active small molecule may save directly or indirectly a number of people. Even if the molecule has not been used as a therapeutic agent, it can be used as a useful chemical probe for dissecting a living cell into different biochemical pieces. Such biologically active small molecules derived from microorganisms have been primarily found in cultivable microorganisms that make up only 1% of total microbes in nature. Discovery of novel growth factors, zincmethylphyrin, zinc coproporphyrin, and coproporphyrin enabled laboratory cultivation of previously uncultured Leucobacter sp. These findings might expand the possibility for further discovery of novel therapeutic agents or chemical probes.  相似文献   

4.
Proprotein convertase subtilisin kexin like type 9 (PCSK9) has since its discovery been a key protein target for the modulation of LDL cholesterol. The interest in PCSK9 has grown even more with the positive clinical trial outcomes in cardiovascular disease recently reported for two PCSK9 antibodies. Currently, there are no PCSK9 small molecule programs active in clinical development. However, there has been a steady increase in publications and patent applications within the PCSK9 small molecule field. This digest will provide a summary of small molecule and peptide PCSK9 modulators reported both in scientific journals and in patent applications, most of them originating from the last 3–4?years. As such, this digest will serve as an introduction to the field and assist further identification and discovery of small molecule PCSK9 modulators.  相似文献   

5.
宋新蕊  李达  陈洁  赵勇 《生物信息学》2014,12(4):300-304
先导化合物发现是创新药物研发的最重要环节之一。针对目前海量功能不明确的小分子化合物,本文构建了一个用来实现快速发现先导化合物,有效降低药物研发成本的计算机辅助药物筛选平台。该平台采用分布式架构思想,集成了Auto Dock Vina和多个小分子库,具有数据安全、计算与存储的负载均衡以及实时监控的特点。应用平台进行先导化合物筛选,在较短时间发现了有针对性的活性小分子化合物,命中率高,大大缩短先导化合物发现周期。该平台具有很好的实用性和良好的扩展性。  相似文献   

6.
The screening of diverse libraries of small molecules created by combinatorial synthetic methods is a recent development which has the potential to accelerate the identification of lead compounds in drug discovery. We have developed a direct and rapid method to identify lead compounds in libraries involving affinity selection and mass spectrometry. In our strategy, the receptor or target molecule of interest is used to isolate the active components from the library physically, followed by direct structural identification of the active compounds bound to the target molecule by mass spectrometry. In a drug design strategy, structurally diverse libraries can be used for the initial identification of lead compounds. Once lead compounds have been identified, libraries containing compounds chemically similar to the lead compound can be generated and used to optimize the binding characteristics. These strategies have also been adopted for more detailed studies of protein–ligand interactions.  相似文献   

7.
Current drug discovery efforts focus primarily on proteins with defined enzymatic or small molecule binding sites. Autoregulatory domains represent attractive alternative targets for small molecule inhibitors because they also occur in noncatalytic proteins and because allosteric inhibitors may avoid specificity problems inherent in active site-directed inhibitors. We report here the identification of wiskostatin, a chemical inhibitor of the neural Wiskott-Aldrich syndrome protein (N-WASP). Wiskostatin interacts with a cleft in the regulatory GTPase-binding domain (GBD) of WASP in the solution structure of the complex. Wiskostatin induces folding of the isolated, unstructured GBD into its autoinhibited conformation, suggesting that wiskostatin functions by stabilizing N-WASP in its autoinhibited state. The use of small molecules to bias conformational equilibria represents a potentially general strategy for chemical inhibition of autoinhibited proteins, even in cases where such sites have not been naturally evolved in a target.  相似文献   

8.
Cathepsin D, a lysosomal aspartyl protease, has been implicated in the pathology of Alzheimer's disease as well as breast and ovarian cancer. A weakly active cathepsin D inhibitor was identified by high throughput screening. Subsequent optimization led to the discovery of a new class of small molecule inhibitors of this enzyme, culminating with the sulfonamide 13 (IC50 = 250 nM).  相似文献   

9.
The majority of small molecule drugs act on protein targets to exert a therapeutic function. It has become apparent in recent years that many small molecule drugs act on more than one particular target and consequently, approaches which profile drugs to uncover their target binding spectrum have become increasingly important. Classical yeast two-hybrid systems have mainly been used to discover and characterize protein-protein interactions, but recent modifications and improvements have opened up new routes towards screening for small molecule-protein interactions. Such yeast "n"-hybrid systems hold great promise for the development of drugs which interfere with protein-protein interactions and for the discovery of drug-target interactions. In this review, we discuss several yeast two-hybrid based approaches with applications in drug discovery and describe a protocol for yeast three-hybrid screening of small molecules to identify their direct targets.  相似文献   

10.
We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.  相似文献   

11.
Using small molecules to study big questions in cellular microbiology   总被引:1,自引:1,他引:0  
High-throughput screening of small molecules is used extensively in pharmaceutical settings for the purpose of drug discovery. In the case of antimicrobials, this involves the identification of small molecules that are significantly more toxic to the microbe than to the host. Only a small percentage of the small molecules identified in these screens have been studied in sufficient detail to explain the molecular basis of their antimicrobial effect. Rarer still are small molecule screens undertaken with the explicit goal of learning more about the biology of a particular microbe or the mechanism of its interaction with its host. Recent technological advances in small molecule synthesis and high-throughput screening have made such mechanism-directed small molecule approaches a powerful and accessible experimental option. In this article, we provide an overview of the methods and technical requirements and we discuss the potential of small molecule approaches to address important and often otherwise experimentally intractable problems in cellular microbiology.  相似文献   

12.
Small molecules are widely used for the modulation of the molecular basis of diseases. This makes them the perfect tool for discovering and developing new therapeutics. In this work, we have established a library of small molecules in house and characterized its molecular and druglike properties. We have shown that most small molecules have molecular weights less than 450. They have pharmaceutically relevant cLogP, cLogS, and druglikeness value distributions. In addition, Meinox’s small molecule library contained small molecules with polar surface areas that are less than 60 square angstroms, suggesting their potent ability to cross the blood-brain barrier. Meinox’s small molecule library was also tested in vitro for pathologically distinct forms of cancer, including pancreatic adenocarcinoma PANC1, breast carcinoma MCF7, and lymphoblastic carcinoma RS4-11 cell lines. Analysis of this library at a dose of 1 μM allowed the discovery of potent, specific or broadly active anticancer compounds against pathologically distinct cancers. This study shows that in vitro analysis of different cancers or other phenotypic assays with Meinox small molecule library may generate novel and potent bioassay-specific compounds.  相似文献   

13.
Parasites have developed a variety of strategies for invading hosts and escaping their immune response. A common mechanism by which parasites escape nitric oxide (NO) toxicity is the activation of host arginase. This activation leads to a depletion of l-arginine, which is the substrate for NO synthase, resulting in lower levels of NO and increased production of polyamines that are necessary for parasite growth and differentiation. For this reason, small molecule inhibitors for arginase show promise as new anti-parasitic chemotherapeutics. However, few arginase inhibitors have been reported. Here, we describe the discovery of novel irreversible arginase inhibitors, and their characterization using biochemical, kinetic, and structural studies. Importantly, we determined the site on human arginase that is labeled by one of the small molecule inhibitors. The tandem mass spectra data show that the inhibitor occupies the enzyme active site and forms a covalent bond with Thr135 of arginase. These findings pave the way for the development of more potent and selective irreversible arginase inhibitors.  相似文献   

14.
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.  相似文献   

15.
One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.  相似文献   

16.
Rational conversion of noncontinuous active regions of proteins into a small orally bioavailable molecule is crucial for the discovery of new drugs based on inhibition of protein–protein interactions. We developed a method that utilizes backbone cyclization as an intermediate step for conversion of the CD4 noncontinuous active region into small macrocyclic molecules. We demonstrate that this method is feasible by preparing small inhibitor for human immunodeficiency virus infection. The lead compound, CG-1, proved orally available in the rat model.  相似文献   

17.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapeutic target for the development of cholesterol-lowering drugs. In the discovery of PCSK9/LDLR (low-density lipoprotein receptor) protein-protein interaction (PPI) impairing small molecules, a total of 47 phenylbenzo[d][1,3] dioxole-based compounds were designed and synthesised. The result revealed that the 4-chlorobenzyl substitution in the amino group is important for the PPI disrupting activity. In the hepatocyte-based functional tests, active compounds such as A12, B1, B3, B4 and B14, restored the LDLR levels on the surface of hepatic HepG2 cells and increased extracellular LDL uptake in the presence of PCSK9. It is notable that molecule B14 exhibited good performance in all the evaluations. Collectively, novel structures targeting PCSK9/LDLR PPI have been developed with hypolipidemic potential. Further structural modification of derived active compounds is promising in the discovery of lead compounds with improved activity for the treatment of hyperlipidaemia-related disorders.  相似文献   

18.
19.
Natural product-inspired libraries of molecules with diverse architectures have evolved as one of the most useful tools for discovering lead molecules for drug discovery. In comparison to conventional combinatorial libraries, these molecules have been inferred to perform better in phenotypic screening against complicated targets. Diversity-oriented synthesis (DOS) is a forward directional strategy to access such multifaceted library of molecules. From a successful DOS campaign of a natural product-inspired library, recently a small molecule with spiroindoline motif was identified as a potent anti-breast cancer compound. Herein we report the subcellular studies performed for this molecule on breast cancer cells. Our investigation revealed that it repositions microtubule cytoskeleton and displaces AKAP9 located at the microtubule organization centre. DNA ladder assay and cell cycle experiments further established the molecule as an apoptotic agent. This work further substantiated the amalgamation of DOS-phenotypic screening-sub-cellular studies as a consolidated blueprint for the discovery of potential pharmaceutical drug candidates.  相似文献   

20.
The drug discovery process involves designing compounds to selectively interact with their targets. The majority of therapeutic targets for low molecular weight (small molecule) drugs are proteins. The outstanding accuracy with which recent artificial intelligence methods compile the three-dimensional structure of proteins has made protein targets more accessible to the drug design process. Here, we present our perspective of the significance of accurate protein structure prediction on various stages of the small molecule drug discovery life cycle focusing on current capabilities and assessing how further evolution of such predictive procedures can have a more decisive impact in the discovery of new medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号