首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

2.
Succinylated mercerized cellulose (cell 1) was used to synthesize an anion exchange resin. Cell 1, containing carboxylic acid groups was reacted with triethylenetetramine to introduce amine functionality to this material to obtain cell 2. Cell 2 was reacted with methyl-iodide to quaternize the amine groups from this material to obtain cell 3. Cells 2 and 3 were characterized by mass percent gain, degree of amination and quaternization, FTIR and CHN. Cells 2 and 3 showed degrees of amination and quaternization of 2.8 and 0.9 mmol/g and nitrogen content of 6.07% and 2.13%, respectively. Cell 3 was used for Cr (VI) adsorption studies. Adsorption equilibrium time and optimum pH for Cr (VI) adsorption were found to be 300 min and 3.1, respectively. The Langmuir isotherm was used to model adsorption equilibrium data. The adsorption capacity of cell 3 was found to be 0.829 mmol/g. Kinetic studies showed that the rate of adsorption of Cr (VI) on cell 3 obeyed a pseudo-second-order kinetic model.  相似文献   

3.
Preparation of the activated carbons from sunflower oil cake by sulphuric acid activation with different impregnation ratios was carried out. Laboratory prepared activated carbons were used as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Liquid-phase adsorption experiments were conducted and the maximum adsorption capacity of each activated carbon was determined. The effects of various process parameters i.e., temperature, pH, initial methylene blue concentration, contact time on the adsorption capacity of each activated carbon were investigated. The kinetic models for MB adsorption onto the activated carbons were studied. Langmuir isotherm showed better fit than Freundlich isotherm for all activated carbon samples. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The separation factor (R(L)) revealed the favorable nature of the isotherm of the MB activated carbon system.  相似文献   

4.
Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan. The effect of process parameters, such as pH of the initial solution, and concentrations of dyes on the extent of Methylene Blue (MB) adsorption was investigated. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 289.02 mg/g at 298 K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined to be −25.32 kJ mol−1, −6.76 kJ mol−1 and −62.36 J mol−1 K−1, respectively, which leads to a conclusion that the adsorption process is spontaneous and exothermic.  相似文献   

5.
A novel nano-adsorbent, β-cyclodextrin-chitosan (CDC) modified Fe(3)O(4) nanoparticles (CDCM) is fabricated for removal of methyl blue (MB) from aqueous solution by grafting CDC onto the magnetite surface. The characteristics results of FTIR, SEM and XRD show that CDC is grafted onto Fe(3)O(4) nanoparticles. The grafted CDC on the Fe(3)O(4) nanoparticles contributes to an enhancement of the adsorption capacity because of the strong abilities of CDCM, which includes the multiple hydroxyl, carboxyl groups, amino groups and the formation of an inclusion complex due to the β-CD molecules through host-guest interactions, to adsorb MB. The adsorption of MB onto CDCM is found to be dependent on pH and temperature. Adsorption equilibrium is achieved in 50 min and the adsorption kinetics of MB is found to follow a pseudo-second-order kinetic model. Equilibrium data for MB adsorption are fitted well by Langmuir isotherm model. The maximum adsorption capacity for MB is estimated to be 2.78 g/g at 30°C. The CDCM was stable and easily recovered. Moreover the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used four times.  相似文献   

6.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

7.
In order to increase the adsorption capacity of cationic starch and avoid the loss of cationic groups, novel and cost-effective cationic starch (CS) intercalated clay composite matrix was prepared by controlling the weight ratio of clay and CS. Intercalated microstructure of the composite matrix was characterized by FTIR and XRD, respectively. Reactive dye (brilliant blue X-BR) was used to study adsorption behaviors of the matrix under various parameters such as weight ratio of clay to CS, initial dye concentration, contact time and temperature. Adsorption equilibrium, thermodynamics and kinetics models were further investigated. The results showed that the adsorption capacity increased greatly with increasing the weight ratio of clay to CS from 0.1 to 0.2, and then decreased when the weight ratio up to 0.3. The adsorption isotherm fitted well with the Langmuir isotherm model with a maximum adsorption capacity of 122.0 mg/g. Kinetic study showed that the pseudo-second-order model provided a better correlation of experimental data. Furthermore, the thermodynamic parameters were also calculated.  相似文献   

8.
The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.  相似文献   

9.
A composite membrane from 2-hydroxyethyl methacrylate (HEMA) and poly(hydroxyethyl methacrylate)/chitosan (pHEMA/chitosan) was synthesized via UV initiated photo-polymerization in the presence of an initiator α,α′-azoisobutyronitrile (AIBN). Procion Brown MX 5BR was then covalently immobilized onto composite membrane as a dye–ligand. The binding characteristics of a model protein (i.e. lysozyme) to the dye–ligand immobilized affinity membrane have been investigated from aqueous solution using the plain composite membrane as a control system. The experimental data was analyzed using two adsorption kinetic models, the pseudo-first-order and the pseudo-second-order, to determine the best-fit equation for the adsorption of lysozyme onto affinity composite membrane. The second-order equation for the adsorption of lysozyme on the dye–ligand membrane systems is the most appropriate equation to predict the adsorption capacity for the affinity membrane. The reversible lysozyme adsorption on the affinity membrane obeyed the Freundlich isotherm. The lysozyme adsorption capacity of the plain membrane and the dye–ligand affinity membrane were 8.3 and 121.5 mg ml−1, respectively.  相似文献   

10.
The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005–0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25 mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.  相似文献   

11.
Cross-linked magnetic chitosan anthranilic acid glutaraldehyde Schiff's base (CAGS) was prepared for adsorption of both As(V) and Cr(VI) ions and their determination by ICP-OES. Prepared cross-linked magnetic CAGS was investigated by means of SEM, FTIR, wide angle X-ray diffraction (WAXRD) and TGA analysis. The adsorption properties of cross-linked magnetic CAGS resin toward both As(V) and Cr(VI) were evaluated. Various factors affecting the uptake behavior such as pH, temperature, contact time, initial concentration of metal ions, effect of other ions and desorption were studied. The equilibrium was achieved after about 110 min and 120 min for As(V) and Cr(VI), respectively at pH = 2. The adsorption kinetics followed the mechanism of the pseudo-second order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 58.48 and 62.42 mg/g for both Cr(VI) and As(V), respectively. Cross-linked magnetic CAGS displayed higher adsorption capacity for Cr(VI). The adsorption capacity of the metal ions increased with increasing temperature under optimum conditions in case of Cr(VI), but decreased in case of As(V). The metal ion-loaded cross-linked magnetic CAGS were regenerated with an efficiency of greater than 88% using 0.2 M sodium hydroxide (NaOH).  相似文献   

12.
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L−1) using the fraction 63–100 μm of ATOS (solid/liquid ratio: 1 g L−1). Experimental data were modeled by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherms. The Freundlich isotherm model (R2 = 0.98–0.99) fitted the equilibrium data better than the Langmuir and D–R isotherm models, with low sum of error values (SE = 1.4–9.2%). The mean adsorption free energy derived from the D–R isotherm model (R2 = 0.95–0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, ΔH, ΔS and ΔG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.  相似文献   

13.
The synthesis of chitosan-graft-γ-cyclodextrin (Ch-g-γ-CD) using persulfate/ascorbic acid redox system was done and characterized by FTIR, XRD, TGA and SEM/EDX. The optimum yield of the copolymer was obtained using 16 × 10−3 M γ-cyclodextrins (γ-CD), 2.8 × 10−2 M ascorbic acid (AA), 1.8 × 10−2 M K2S2O8 and 0.1 g chitosan in 25 mL of 2% aqueous formic acid at 45 ± 0.2 °C. The highest percent grafting samples were evaluated for cadmium metal ion (Cd(II)) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The sorption was pH and concentration dependent where, pH = 8.5 was found to be the optimum value. The adsorption data were modeled using Langmuir and Freundlich isotherms. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 833.33 mg/g. The influence of electrolytes, sodium chloride (NaCl) and sodium sulphate (Na2SO4) on Cd(II) uptake was also studied. Desorption of the cadmium loaded Ch-g-γ-CD was accomplished with 0.01 N H2SO4. The adsorbent exhibited high reusability and could be successfully recycled for nine cycles where in the ninth cycle 27% adsorption was feasible.  相似文献   

14.
A novel activated nylon-based membrane was prepared and applied as an adsorbent for the removal of Cu2+ from aqueous solutions. It involved three stages: (i) deposition of a chitosan layer that functionalized the nylon membrane, (ii) cross-linking with epichlorohydrin to stabilize the polymer layer and enabling grafting, and (iii) iminodiacetic acid grafting. SEM and EDX techniques were used to characterize the composition of the membranes. Dynamic adsorption experiments on membranes were carried out at various pH values, contact times, adsorption dosages and initial metal concentrations to determine optimum membrane adsorption properties. The adsorption isotherm relating to Cu2+ fitted the Langmuir equation and an adsorption equilibrium constant and adsorption capacity of 2.345x10(-3)mg/ml and 10.794mg/g were determined, respectively. The experimental data was analyzed using two adsorption kinetic models, pseudo-first-order and pseudo-second-order with the latter system providing the best fit. Finally complete regeneration of the activated nylon membrane was possible using 100mmol/l Na2EDTA.  相似文献   

15.
The adsorption of 10-deacetylpaclitaxel onto Sylopute was investigated at different initial 10-DAP concentrations, adsorption temperatures, and durations. The Freundlich isotherm model showed good fit to the equilibrium adsorption data. It was found that adsorption capacity increases with increasing temperature and that the adsorption of 10-DAP onto Sylopute is favorable and physical in nature. The obtained kinetic data agree well with the pseudo-second-order model, and the adsorption reaches equilibrium very quickly within 1 min. Thermodynamic parameters revealed the endothermic, irreversible and nonspontaneous nature of adsorption. The isosteric heat of adsorption changes very little as the adsorption capacity increases.  相似文献   

16.
Abstract

Adsorption of dyes onto natural materials like polysaccharides is considered a green chemistry approach for remediation of wastewater. In this work, the polysaccharide isolated from the corm of Colocasia esculenta (L.) Schott or taro tuber (CEM) was utilized for removing methylene blue (MB) from aqueous solution by batch adsorption method. The CEM adsorbent was characterized by FTIR spectroscopy, Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The solution pH and adsorbent dose have been found to have a significant positive correlation with the adsorptive removal efficiency of CEM for MB dye. The removal efficiency of CEM was found to be 72.35% under the optimum conditions; 20?mg/L initial concentration of dye, 120?mg of adsorbent dose, solution pH 8.5, 311.2?K temperature and 80?min contact time. The adsorption of MB onto CEM followed best the Freundlich isotherm and pseudo-second-order kinetics. The adsorption was thermodynamically favorable and was endothermic in nature. The desorption/adsorption data justifiably indicated the reuse capability of CEM adsorbent for MB adsorption. Hence, CEM may be regarded as an eco-friendly and cost-effective natural adsorbent for MB dye removal from aqueous solution.  相似文献   

17.
The capability of durian shell waste biomass as a novel and potential biosorbent for Cr(VI) removal from synthetic wastewater was studied. The adsorption study was performed in batch mode at different temperatures and pH. Langmuir and Freundlich isotherm models fit the equilibrium data very well (R2 > 0.99). The maximum biosorption capacity of durian shell was 117 mg/g. On modeling its kinetic experimental data, the pseudo-first order prevails over the pseudo-second order model. Thermodynamically, the characteristic of Cr-biosorption process onto durian shell surface was spontaneous, irreversible and endothermic.  相似文献   

18.
Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits.  相似文献   

19.
Nitrate sorption potentials of three surface soils (soils-1-3) were evaluated under different solute concentrations, i.e. 1-100 mg L−1. Batch and diffusion-cell adsorption experiments were conducted to delineate the diffusion property and maximum specific nitrate adsorption capacity (MSNAC) of the soils. Ho’s pseudo-second order model well fitted the batch adsorption kinetics data (R2 > 0.99). Subsequently, the MSNAC was estimated using Langmuir and Freundlich isotherms; however, the best-fit was obtained with Langmuir isotherm. Interestingly, the batch adsorption experiments over-estimated the MSNAC of the soils compared with the diffusion-cell tests. On the other hand, a proportionate increase in the MSNAC was observed with the increase in soil organic matter content (OM) under the batch and diffusion-cell tests. Therefore, increasing the soil OM by the application of natural compost could stop nitrate leaching from agricultural fields and also increase the fertility of soil.  相似文献   

20.
A batch study on the removal of As(III) and As(V) ions from contaminated water by biosorption using powdered Psidium guajava (Guava) leaf as biosorbent was carried out in the present work. FT-IR (Fourier transform infrared) and SEM (scanning electron microscopy) were used to characterize the surface of the biosorbent. The effect of sorption parameters such as pH, temperature (T c), adsorbent dose (D c), and contact time (t c) were studied. At optimum treatment conditions, the maximum uptake of 1.06 mg of As(III) per gram and 2.39 mg of As(V) per gram onto the surface of biosorbent were obtained. Langmuir and Freundlich isotherm models were examined for sorption equilibrium at various temperatures. The sorption isotherm was favorable with the Freundlich model with the experimental data. Furthermore, higher uptake kinetics was tested for the pseudo-first-order and pseudo-second-order models. The pseudo-second-order model appeared to be the more suitable model to describe arsenic biosorption. ΔG 0 values were negative at all temperatures, confirming the feasible and spontaneous nature of the biosorption process. Solvent desorption studies help in understanding the mechanism of the adsorption process and also to check the stability of the loaded/spent adsorbents. HCl was found to show maximum effectiveness in the desorption of both As(III) and As(V) with the comparison of other solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号