首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach aiming at improving paper properties is to use laccase to copolymerize low-molecular weight phenols with the pulp before papermaking. The addition of methyl syringate (MS) gave a twice wet tensile index of unbleached kraft pulp with laccase treatment but had little effect on the dry tensile index and substantially decreased the brightness of pulp. The radical concentration in laccase-treated fibers increased up to 2.5 times of that in control sample after 60 min. The radical concentration in laccase/MS-treated fibers increased up to 20 times of that in control sample within 2 min, and a highest radical concentration (increased by near 65 times) was obtained after 40 min. A strong agglutination of large-area fibers in handsheet was observed after laccase/MS treatment. The surface lignin coverage of the laccase-treated fibers increased from 54.96% (control) to 59.36%, while that of the laccase/MS-treated fibers increased only up to 55.22%. It is suggested that the graft of MS on fiber and degradation of surface lignin occurred simultaneously. The addition of MS can enhance the activation of fibers and extend the enzymatic oxidation of lignin within the cell wall. An increased bonding area of fibers resulting from interaction of laccase, MS and fibers via radical-coupling reaction maybe account for the significantly improved wet strength of pulp.  相似文献   

2.
In an effort to alter the physical properties of high-yield kraft, fibers were treated at high consistency (20%) with laccase and syringic, vanillic, or 4-hydroxybenzoic acid. Treatment with laccase and 4-hydroxybenzoic acid resulted in a 20-point increase in kappa number and a 100% increase in bulk acid groups. ESCA analysis of the treated and untreated pulp revealed that the laccase-grafted fibers had a two-fold enrichment in acid groups, strongly suggesting a laccase-facilitated coupling of 4-hydroxybenzoic acid to the fiber surface. A model system consisting of lignin-coated cellulosic fibers was developed to determine changes to the lignin structure during laccase grafting. 31P NMR analysis of lignin from the model system revealed an increase in acid groups with a concomitant decrease in phenolic hydroxyl groups.  相似文献   

3.
Laccases in combination with various chemical compounds have been tested with a view to obtain environmental friendly, high‐value paper products from unbleached flax pulp, which is currently being assessed as a raw material for biotechnological innovation. With the aim of better understanding the effects of violuric acid (VA) and p‐coumaric acid (PCA) on flax pulp, changes in the chemical composition of the two major fiber types it contains were assessed. Following classification, the initial pulp was split into two fractions according to fiber size, namely: bast (long) fibers and core (short) fibers. Fiber size was found to significantly influence the properties of pulp and it response to various laccase treatments. The laccase‐PCA treatment substantially increased kappa number (KN) and color in both fiber fractions, which suggests grafting of the phenolic compound onto fibers. On the other hand, the laccase‐VA treatment produced long fibers with a low lignin content (KN = 1.3) and a high brightness (5% points higher than for the control fraction), which testifies to its bleaching efficiency. Both biotreatments produced long fibers containing highly crystalline cellulose and caused HexA removal from global and short fibers. On the other hand, the laccase treatments caused no morphological changes in the fibers, the integrity of which was largely preserved. As shown here, laccase acts as polymerization agent with PCA and as delignification agent with VA; also, the two enzymes systems act differently on bast and core fibers. Biotechnol. Bioeng. 2012;109: 225–233. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Previous investigations have shown that laccase catalyzed oxidation of lignin containing wood fibers can enhance the strength of medium density fiberboards. In the present work it was investigated if laccase treatment had any impact on the tensile strength of a high yield unbleached kraft pulp. Treatment with laccase alone had only a very little effect on the wet strength of the pulp, whereas addition of lignin rich extractives increased the wet strength after the enzyme treatment significantly. A mediated oxidation gave a similar improvement of the wet tensile strength although no lignin was added to the fiber suspension. Furthermore, it was found that a heat treatment combined with a mediated oxidation gave a higher improvement in wet tensile strength than could be accounted for by the individual treatments. No change in dry tensile strength from the laccase treatment was observed. It is suggested that the observed improvement in wet tensile strength is related to polymerization of lignin on fibers in the hand sheet and/or coupling of phenoxy radicals on lignin associated to adjacent fibers. For the different mediators studied, a correlation was found between oxygen consumption upon mediated oxidation and generation of wet strength in the pulp.  相似文献   

5.
The insertion of oat husk lignin onto chemithermomechanical pulp (CTMP) fibers was studied to increase fiber hydrophobicity. The pretreated pulp samples were subsequently used for preparation of handsheets for characterization. Treatment of CTMP with laccase in the presence of oat husk lignin resulted in a significant increase in hydrophobicity of the handsheet surface, as indicated by dynamic contact angle analysis. Water absorption time of 8 s was obtained with initial contact angle of 118°. Although the handsheet's brightness was reduced by 33%, tensile index was only subtly decreased. Neither laccase nor oat husk lignin alone gave much improved water absorption times. Therefore, handsheets made of laccase-treated pulp with and without oat husk lignin were further examined by XPS, which suggested that both laccase and oat husk lignin were inserted onto CTMP fibers. The oat husk lignin was distributed as heterogeneous aggregates on the handsheet surface whereas laccase was uniformly distributed. Evidence was obtained that the adsorbed laccase layer formed a noncovalent base for the insertion of oat husk lignin onto fiber surfaces.  相似文献   

6.
The effects of xylanase pretreatment of high lignin content softwood (SW) kraft pulp on subsequent pulp treatment with laccase in combination with gallic acid were investigated. Although xylanase pretreatment was ineffective in enhancing the laccase-facilitated biografting of gallic acid to kraft fibers, it was beneficial for subsequent treatment with laccase exclusively. Treating pulp fibers with xylanase followed by laccase provided a collective 25% and 46% increase in dry and wet tensile strength properties, respectively.  相似文献   

7.
The white-rot fungus Coriolus versicolor increased the brightness of hardwood kraft pulp by two mechanisms depending on the concentration of available nitrogen. In low-nitrogen conditions, the brightening process was a chemical effect mediated by the fungus, associated with the removal of residual lignin in the pulp; kappa number was used as an indicator of lignin concentration. A five-day treatment in low-nitrogen conditions increased the brightness of hardwood kraft pulp from 36.2 to 54.5%, with a corresponding decrease in kappa number from 12.0 to 8.5, equivalent to a reduction in the lignin concentration from ca. 2.0% (wt/wt) to ca. 1.4% (wt/wt). Under these conditions, we concluded that the brightening of the pulp was a secondary metabolic event initiated after the depletion of available nitrogen. This method of brightening has been described as bleaching or biobleaching. By contrast, in high-nitrogen conditions, the brightening was a physical effect associated with the dilution of the dark pulp fibers by the relatively high levels of brighter fungal mycelium produced. Since this method of brightening was not evidently associated with lignin removal, it cannot be described as bleaching. In pulp samples brightened in high-nitrogen conditions, as brightness increased, there was a corresponding increase in kappa number. This observation was explained by the consumption of potassium permanganate by the fungal mycelium, which interfered with kappa number determinations at high fungal biomass levels.  相似文献   

8.
Cold plasma treatment is used to modify the cellulosic fibers for a variety of applications. The grafting of softwood unbleached (UBP) and bleached (BP) kraft pulp fibers has been performed under the action of cold plasma discharges, using different kinds of fatty acids. The grafted samples are characterized by FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), termogravimetry (TG-DTG) and X-ray diffraction (XRD). All these methods confirm the morphological and structural changes after plasma treatment which determines the modification in cellulosic fiber properties. The active centers created within the cellulose chains by plasma treatment were used to initiate grafting reactions with fatty acids. Such modification is useful to enhance the fibers properties such as softness and to change hydrophilic/hydrophobic balance.  相似文献   

9.
The effects of laccase-natural mediator systems (LMS) on sisal pulp and their potential for either biobleaching or functionalizing (via radical-coupling) its fibres were investigated. The enzyme treatment (L stage) was followed by extraction with hydrogen peroxide in order to determine whether observable effects could be enhanced by removing LMS-modified lignin. Four different plant phenols [viz. the p-hydroxycinnamic compounds sinapic acid (SNC), ferulic acid (FRC), coniferyl aldehyde (CLD) and sinapyl aldehyde (SLD)] were used as laccase redox mediators and their effects on pulp and effluents compared with those of the synthetic compound 1-hydroxybenzotriazole (HBT). During the L stage performed with HBT, laccase underwent a loss of 99% and 78% of the initial activity, in the absence and presence of pulp, respectively. With natural mediators inactivation was markedly reduced, being the residual activity between 65% and 100% of the initial one, in the presence of pulp. The pulp was found to protect the enzyme against inactivation: the activity was only reduced by 45% in its presence. Under the operating conditions used the natural mediators proved less efficient than HBT in facilitating pulp bleaching; rather, they tended to bind to pulp fibres. This effect could be used to functionalize fibres in order to improve intrinsic properties of pulp or introducing novel ones (e.g. antimicrobial, antioxidant, optical properties, etc.). This paper shows for the first time the application of laccase-mediator systems to sisal pulp.  相似文献   

10.
A laccase catalyzed oxidative treatment of wood pulp fibers has been found to induce unusual modifications of these fibers that are qualitatively different from those encountered when more severely degraded fibers are subjected to similar enzymatically catalyzed oxidative treatments. These results suggest that the physical/conformational state of the lignin of wood fibers determines which oxidation pathways dominate in a given oxidative treatment, leading to different lignin modifications depending on both the chemical and the physical structure of the lignin polymer. Spectroscopic measurements (ESR, IR, UV-Vis and fluorescence) show that the laccase treatment results in the formation of two different species in the dried fibers: one is interpreted as chemically transformed (via oxygen) lignin products, and the other as initial oxidation radicals which have gained stabilization against transformation into the first mentioned products via a migration mechanism. It is argued that these initial radicals may likely be cation radical (or hole state) parts in lignin. The migration mechanism is identified with site-to-site transfer or 'hopping' via electron transfer and it is postulated that this mechanism 'carries' cation radical parts of the lignin, produced at the surface of the fiber, into parts of the lignin where chemical transformation pathways are suppressed due to the lignin conformational state. The possible existence of such a migration mechanism, the relative dominance of which should depend sensitively on the polymer conformational state, may have implications for the biogeneration and biodegradation of lignin as well as for oxidative treatments of non-natural conjugated polymers.  相似文献   

11.
Composites based on phenolic matrices and unmodified and chemically modified sugar cane bagasse and curaua fibers were prepared. The fibers were oxidized by chlorine dioxide, mainly phenolic syringyl and guaiacyl units of the lignin polymer, followed by grafting furfuryl alcohol (FA), which is a chemical obtained from a renewable source. The fibers were widely characterized by chemical composition analysis, crystallinity, UV-vis diffuse reflectance spectroscopy, SEM, DSC, TG, tensile strength, and 13C CP-MAS NMR. The composites were analyzed by SEM, impact strength, and DMA. The SEM images and DMA results showed that the oxidation of sugar cane bagasse fibers followed by reaction with FA favored the fiber/matrix interaction at the interface. The same chemical modification was less effective for curaua fibers, probably due to its lower lignin content, since the reaction considered touches mainly the lignin moiety. The tensile strength results obtained showed that the fibers were partially degraded by the chemical treatment, decreasing then the impact strength of the composites reinforced with them. In the continuity of the present project, efforts has been addressed to the optimization of fiber surface modification, looking for reagents preferably obtained from renewable resources and for chemical modifications that intensify the fiber/matrix interaction without loss of mechanical properties.  相似文献   

12.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase-HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase-HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols-filipin signals were almost completely absent.  相似文献   

13.
This study investigated the individual influences of hemicelluloses and lignin removal on the water uptake behavior of hemp fibers. Hemp fibers with different content of either hemicelluloses or lignin were obtained by chemical treatment with 17.5% sodium hydroxide or 0.7% sodium chlorite. Various tests (capillary rise method, moisture sorption, water retention power) were applied to evaluate the change in water uptake of modified hemp fibers. The obtained results show that when the content of either hemicelluloses or lignin is reduced progressively by chemical treatment, the capillary properties of hemp fibers are improved, i.e. capillary rise height of modified fibers is increased up to 2.7 times in relation to unmodified fibers. Furthermore, hemicelluloses removal increases the moisture sorption and decreases the water retention values of hemp fibers, while lignin removal decreases the moisture sorption and increases the water retention ability of hemp fibers.  相似文献   

14.
This study demonstrates the potential of laccase-facilitated grafting of amino acids to high-lignin content pulps to improve their physical properties in paper products. Research studies have recently reported that increases in anionic fiber charge can improve strength properties of paper. In an effort to increase carboxylic acid groups, we developed a unique two-stage laccase grafting protocol in which fibers were initially treated with laccase followed by grafting reactions with amino acids. The bulk acid group content was measured, and a variety of amino acids including glycine (Gly), phenylalanine (Phe), serine (Ser), arginine (Arg), histidine (His), alanine (Ala), and aspartic acid (Asp) were examined. The effects of optimizing laccase dose, and amino acid structures, on fiber modification chemistry were studied. Histidine provided the best yield of acid groups on pulp fiber, and was used for the preparation of handsheets for physical strength testing. Laccase-histidine treated pulp showed an increase in strength properties of the resulting paper.  相似文献   

15.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase–HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase–HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols–filipin signals were almost completely absent.  相似文献   

16.
In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.  相似文献   

17.
Xu QH  Wang YP  Qin MH  Fu YJ  Li ZQ  Zhang FS  Li JH 《Bioresource technology》2011,102(11):6536-6540
Deinking of old newsprint (ONP) by combining hemicellulase with laccase-mediator system (LMS) was investigated, and surface chemical composition and fiber morphology changes during the deinking process were studied by electron spectroscopy for chemical analysis (ESCA), contact angle (CA), attenuated total reflectance fourier transform infrared spectrometry (ATR-FTIR), fiber quality analyzer (FQA), and environmental scanning electronic microscopy (ESEM). Results showed that, compared to the pulp deinked with hemicellulase or LMS individually, effective residual ink concentration (ERIC) was lower for the hemicellulase/LMS-deinked pulp. This indicated that there is a synergistic deinking effect between hemicellulase and LMS. It was found that O/C ratio of the fiber surface increased and the surface coverage of lignin decreased during the hemicellulase/LMS deinking process. The contact angle of the hemicellulase/LMS-deinked pulp was lower than that of pulps deinked with each individual enzyme. ESEM observations showed that more fibrils appeared on the fiber surface due to synergistic treatment.  相似文献   

18.
Laccase was reacted with gallic acid in the presence of a high-kappa (91) kraft pulp. The result was a modified pulp with 34%, 20%, and 72% improvements in burst, tensile, and wet tensile strength compared to untreated control samples. Fully bleached pulps were not responsive to the laccase treatment, indicating lignin was the major target for the fiber modification. The results indicate that the strength increases were a combined effect of improvements of hydrogen bonding between fibers and creation of phenoxy radical cross-links within the sheet.  相似文献   

19.
Cell wall deterioration throughout enzymatic hydrolysis of cellulosic biomass is greatly affected by the chemical composition and the ultrastructure of the fiber cell wall. The resulting pattern of cell wall deterioration will reveal information on cellulose activity throughout enzymatic hydrolysis. This study investigates the progression and morphological changes in lignocellulose fibers throughout enzymatic hydrolysis, using (transmission electron microscopy) TEM and field emission scanning electron microscopy (FE‐SEM). Softwood thermo‐mechanical pulp (STMP) and softwood bleached kraft pulp (SBKP), lignocellulose substrates containing almost all the original fiber composition, and with lignin and some hemicellulose removed, respectively, was compared for morphology changes throughout hydrolysis. The difference of conversion between STMP and SBKP after 48 h of enzymatic hydrolysis is 11 and 88%, respectively. TEM images revealed an even fiber cell wall cross section density, with uneven middle lamella coverage in STMP fibers. SKBP fibers exhibited some spaces between cell wall and lamella layers due to the removal of lignin and some hemicellulose. After 1 h hydrolysis in SBKP fibers, there were more changes in the fiber cross‐sectional area than after 10 h hydrolysis in STMP fibers. Cell wall degradation was uneven, and originated in accessible cellulose throughout the fiber cell wall. FE‐SEM images illustrated more morphology changes in SBKP fibers than STMP fibers. Enzymatic action of STMP fiber resulted in a smoother fiber surface, along with fiber peeling and the formation of ribbon‐disjunction layers. SBKP fibers exhibited structural changes such as fiber erosion, fiber cutting, and fiber splitting throughout enzymatic hydrolysis. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
Thermogravimetric analyses (TGA) was applied to study the effects of enzymatic bleaching of eucalyptus pulp with xylanase and a laccase-mediator system. The thermal degradation profile of the pulps was sensitive to the enzymatic treatments. Xylanase treatment produced an ordered and clean microfibril, whereas laccase oxidized surface cellulose chains and increased the amorphous (paracrystalline) cellulose content. In this case, pulp viscosity decreased from 972 to 859 mL/g and apparent pulp crystallinity calculated from TGA data decreased almost 50%. Alkaline extraction was necessary to recover pulp crystallinity and to remove oxidized lignin in the laccase-treated samples. TGA data allowed differentiating and quantifying crystalline and amorphous cellulose. This thermogravimetric approach is a simple method in order to monitor superficial changes in cellulosic microfibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号