首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective Degradation of Wood Components by White-Rot Fungi   总被引:6,自引:0,他引:6  
In order to find naturally occurring white-rot fungi which preferentially degrade lignin. 25 different species of such fungi were cultivated on pine wood blocks and on kraft lignin agar plates with and without cellulose. Due to differences in phenol oxidase reactions on the kraft lignin agar plates, the 25 fungi could be divided into two groups, 1 and 2, which also differed in other properties. The three Group I fungi Sporotrichum pulverulentum, Phanerochaete sp. L1 and Polyporus dichrous produced high levels of endo-l,4-β-glucanase and cellobiose:quinone oxidoreductase in shaking cellulose flasks and a low level of phenol oxidase in standing wood meal flasks, The four fungi Merulius tremellosus, Phlebia radiata, Pycuoporus cinnabarinus and Pleurotus ostreatus from Group 2, on the other hand, produced low levels of endo-1,4-β-glucanase and cellobiose:.quinone oxidoreductase in the cellulose. flasks and a high level of phenol oxidase in the wood meal flasks. Analyses of pine wood blocks degraded by the above-mentioned fungi in the presence of either malt extract, asparagine or NH4H2PO4 revealed that malt extract gave good lignin degradation. In the presence of this nutrient source. P. cinnabarinus, at 3.4% weight loss, even degraded 12.5% lignin without loss of cellulose or mannan. No common degradation pattern was, however, obtained using mall extract, asparagine or NH4H2PO4, It is suggested that while-rot fungi, which preferentially degrade lignin, may be found among Group 2 fungi producing large amounts of phenol oxidases.  相似文献   

2.
Sub-fossil wood is often affected by the decaying process that introduces uncertainties in the measurement of oxygen and carbon stable isotope composition in cellulose. Although the cellulose stable isotopes are widely used as climatic proxies, our understanding of processes controlling their behavior is very limited. We present here a comparative study of stable oxygen and carbon isotope ratios in tree ring cellulose in decayed and non-decayed wood samples of Swiss stone pine (Pinus cembra) trees. The intra-ring stable isotope variability (around the circumference of a single ring) was between 0.1 and 0.5‰ for δ18O values and between 0.5 and 1.6‰ for δ13C values for both decayed and non-decayed wood. Observed intra-tree δ18O variability is less than that reported in the literature (0.5–1.5‰), however, for δ13C it is larger than the reported values (0.7–1.2‰). The inter-tree variability for non-decayed wood ranges between 1.1 and 2.3‰ for δ18O values, and between 2 and 4.7‰ for δ13C values. The inter-tree differences for δ18O values are similar to those reported in the literature (1–2‰ for oxygen and 1–3‰ for carbon) but are larger for δ13C values. We have found that the differences for δ18O and δ13C values between decayed and non-decayed wood are smaller than the variation among different trees from the same site, suggesting that the decayed wood can be used for isotopic paleoclimate research.  相似文献   

3.
Ethanol organosolv pretreatment was performed on Loblolly pine to enhance the efficiency of enzymatic hydrolysis of cellulose to glucose. Solid-state 13C NMR spectroscopy coupled with line shape analysis was used to determine the structure and crystallinity of cellulose isolated from pretreated and enzyme-hydrolyzed Loblolly pine. The results indicate reduced crystallinity of the cellulose following the organosolv pretreatment, which renders the substrate easily hydrolyzable by cellulase. The degree of crystallinity increases and the relative proportion of para-crystalline and amorphous cellulose decreases after enzymatic hydrolysis, indicating preferential hydrolysis of these regions by cellulase. The structural and compositional changes in this material resulting from the organosolv pretreatment and cellulase enzyme hydrolysis of the pretreated wood were studied with solid-state CP/MAS 13C NMR spectroscopy. NMR spectra of the solid material before and after the treatments show that hemicelluloses and lignin are degraded during the organosolv pretreatment.  相似文献   

4.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

5.
Isolation of cellulose from waste polyester/cotton blended fabrics (WBFs) is a bottleneck for recycling and exploiting waste textiles. The objective of this study was to provide a new environmental-friendly and efficient approach for extracting cellulose derivatives and polyester from WBFs. A Bronsted acidic ionic liquid (IL) N-methyl-imidazolium bisulfate, [Hmim]HSO4, was used as a novel catalyst for acetylation of cellulose rather than a solvent with the aim to overcome low isolation efficiency associated with the very high viscosity and relatively high costs of ILs. The extraction yield of acetone-soluble cellulose acetate (CA) was 49.3%, which corresponded to a conversion of 84.5% of the cellulose in the original WBFs; meanwhile, 96.2% of the original poly(ethylene terephthalate) (PET) was recovered. The extracted CA was characterized by 1H NMR, FTIR, XRD and TGA analysis, and the results indicated that high purity acetone-soluble CA and carbohydrate-free PET could be isolated in this manner from WBFs.  相似文献   

6.
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.  相似文献   

7.
Studies of crystallinity of Scots pine and Norway spruce cellulose   总被引:3,自引:0,他引:3  
The variation in the mass fraction of crystalline cellulose (crystallinity of wood), the intrinsic crystallinity of cellulose, and the thickness of cellulose crystallites in early wood of Norway spruce [Picea abies (L.) Karst.], and Scots pine (Pinus sylvestris L.) grown in Finland were studied using wide angle X-ray scattering and nuclear magnetic resonance spectroscopy. The mass fraction of crystalline cellulose in wood increased slightly with the distance from the pith and was about 30±4% in mature wood of both species. The crystallinity of cellulose and the thickness of cellulose crystallites were almost constant for both species. The crystallinity of cellulose was 52±3% for both species and the average thickness of the cellulose crystallites was 32±1 Å and 31±1 Å for Norway spruce and Scots pine, respectively. The mass fraction of cellulose in wood, calculated from the crystallinity values, increased with the distance from the pith for both species.  相似文献   

8.
A standard two-step dilute sulfuric acid pretreatment was performed on Loblolly pine to enhance the overall efficiency of enzymatic deconstruction of woody biomass to monomeric sugars. The structure of milled wood lignin and cellulose isolated from the untreated and acid-treated biomass was studied in detail. Solid-state 13C NMR spectroscopy coupled with line shape analyses has been employed to elucidate cellulose crystallinity and ultrastructure. The results indicate an increase in the degree of crystallinity and reduced relative proportion of less ordered cellulose allomorphs following the acid pretreatment. This increase was attributed to a preferential degradation of amorphous cellulose and less ordered crystalline forms during the high temperature pretreatment. Milled wood lignin structural elucidation by quantitative 13C and 31P NMR reveals an increase in the degree of condensation of lignin due to the pretreatment. The increase in degree of condensation is accompanied by a decrease in β-O-4 linkages which were fragmented and recondensed during the high temperature acid-catalyzed reactions.  相似文献   

9.
《Journal of Asia》2022,25(3):101957
In this study, we investigated the nematicidal activities of the ethanol extracts of 49 medicinal plants against the pine wood nematode, Bursaphelenchus xylophilus, and isolated a main nematicidal constituent, (Z)-ligustilide, from Angelica tenuissima Nakai root extract. Among the 49 plant extracts, only the A. tenuissima root extract showed the strong nematicidal activity against the pine wood nematode, with a 92.3% mortality rate at a concentration of 2 mg/mL. Based on bioassay-guided isolation and gas chromatography-mass spectrometry (GC-MS) analysis, (Z)-ligustilide was identified as the active component of A. tenuissima root extract at 73.6% of the total content ratio. The LC50 value of (Z)-ligustilide against the pine wood nematode was 0.24 mg/mL. Our results indicated that (Z)-ligustilide as well as A. tenuissima root extract can be potential candidates for novel trunk injection agents against the pine wood nematode.  相似文献   

10.
A comparative study on the decomposition of Japanese red pine wood under subcritical water conditions in the presence and absence of phosphate buffer was investigated in a batch-type reaction vessel. Since cellulose makes up more than 40-45% of the components found in most wood species, a series of experiments were also carried out using pure cellulose as a model for woody biomass. Several parameters such as temperature and residence time, as well as pH effects, were investigated in detail. The best temperature for decomposition and hydrolysis of pure cellulose was found around 270 °C. The effects of the initial pH of the solution which ranged from 1.5 to 6.5 were studied. It was found that the pH has a considerable effect on the hydrolysis and decomposition of the cellulose. Several products in the aqueous phase were identified and quantified. The conditions obtained from the subcritical water treatment of pure cellulose were applied for the Japanese red pine wood chips. As a result, even in the absence of acid catalyst, a large amount of wood sample was hydrolyzed in water; however, by using phosphate buffer at pH 2, there was an increase in the hydrolysis and dissolution of the wood chips. In addition to the water-soluble phase, acetone-soluble and water-acetone-insoluble phases were also isolated after subcritical water treatment (which can be attributed mainly to the degraded lignin, tar, and unreacted wood chips, respectively). The initial wood:acid ratio in the case of reactions catalyzed by phosphate buffer was also investigated. The results showed that this weight ratio can be as high as 3:1 without changing the catalytic activity. The size of the wood chips as one of the most important experimental parameters was also investigated.  相似文献   

11.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

12.
The simultaneous action of shear deformation and high pressure (SDHP) creates changes in the structure of wood and its main components (cellulose, hemicelluloses, lignin). The formation of water and alkali soluble polysaccharides under SDHP action, proceeds in seconds in the solid state, without the use of any reagents and solvents. Therefore, SDHP seems to be a technologically safe method and friendly to the environment. The amorphization of cellulose crystallites and depolymerization of cellulose chains were observed under a wide range of pressures (1–6 GPa), both for cellulose samples and the cellulose part of wood. Similar depolymerization occurs in the hemicellulose part of wood. The decomposition of polysaccharides under SDHP causes the formation of the water soluble part, whose content increases with pressure and the applied shear deformation. A maximum solubility of 40% and 55% was registered at 6 GPa following treatment of cellulose and birch wood samples. A higher output in the case of wood can be explained by a specific role of lignin under SDHP, which acts as a ‘grinding stone’ during cellulose and hemicelluloses destruction. As shown by high-performance size exclusion chromatography, the water soluble fraction obtained from cellulose contained glucose (2.6%), cellobiose (9.6%), cellotriose (16.6%) and other higher water soluble oligomers (71%). Almost complete dissolution (98%) of the treated cellulose sample can be achieved by extraction with 10% NaOH solution. The SDHP treated birch wood was subjected to submerged fermentation (with Trichoderma viride), and a 13% output of proteins was obtained. In this case, the water soluble part played the role of the so called ‘start sugars’. Abbreviations: ASF, alkali soluble fraction; DP, degree of polymerization; EC, energy consumption; HP, high pressure; LMWS, low molecular weight sugars; MC, moisture content; MCC, microcrystalline cellulose; SD, shear deformation, SDHP, shear deformation under high pressure; SS, shear strength; WSF, water soluble fraction This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
A series of novel biobased composite films derived from cellulose, starch and lignin were prepared from an ionic liquid (IL), 1-allyl-3-methylimidazolium chloride (AmimCl) by coagulating in a nonsolvent condition. The ionic liquid can be recycled with a high yield and purity after the green film was prepared. The uniform design method was applied to investigate mechanical properties of the biobased composite films. The effect of each component and their associated interactive effects were investigated. The experimental results showed that contents of cellulose, lignin and starch had a significant influence on the mechanical properties of composite films. The composite films showed relatively excellent mechanical properties in dry and wet states owing to the mutual property supplement of different components. The composite films were characterized via FT-IR, X-ray diffraction (XRD) and scanning electron microscope (SEM). Their thermal stability and gas permeability were also investigated, and the results showed that the composite films had good thermal stability and high gas barrier capacity and give a CO2:O2 permeability ratio close to 1.  相似文献   

14.
Biochar and manure can be used for sustainable land management. However, little is known about how soil amendments might affect surface and belowground microbial processes and subsequent wood decomposition. In a split-split-split plot design, we amended soil with two rates of manure (whole plot; 0 and 9 Mg ha−1) and biochar (split plot; 0 and 10 Mg ha−1). Wood stakes of three species (hybrid poplar, triploid Populus tomentosa Carr.; aspen, Populus tremuloides Michx.; and pine, Pinus taeda L.) were placed in two positions (horizontally on the soil surface, and inserted vertically in the mineral soil), which served as a substrate for fungal growth. In 3 years, the decomposition rate (density loss), moisture content, and fungal community (via high-throughput sequencing methods) of stakes were evaluated. Results indicated that biochar and/or manure increased the wood stake decomposition rates, moisture content, and operational taxonomic unit abundance. However, the richness and diversity of fungi were dependent on wood stake position (surface > mineral), species (pine > the two Populus), and sample dates. This study highlights that soil amendment with biochar and/or manure can alter the fungal community, which in turn can enhance an important soil process (i.e., decomposition).  相似文献   

15.
A DNA extraction protocol for submerged pine logs was developed with the following properties: (i) high molecular weight DNA, (ii) PCR amplification of chloroplast and nuclear sequences, and (iii) high sequence homology to voucher pine specimens. The DNA extraction protocol was modified from a cetyltrimehtylammonium bromide (CTAB) protocol by adding stringent electrophoretic purification, proteinase K, RNAse, polyvinyl pyrrolidone (PVP), and Gene Releaser. Chloroplast rbcL (ribulose-1,5-bisphosphate carboxylase) could be amplified. Nuclear ribosomal sequences had >95% homology to Pinus taeda and Pinus palustris. Microsatellite polymorphism for PtTX2082 matched 2 of 14 known P. taeda alleles. Our results show DNA analysis for submerged conifer wood is feasible.  相似文献   

16.
Liu S  Lu H  Hu R  Shupe A  Lin L  Liang B 《Biotechnology advances》2012,30(4):785-810
Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars. At higher acid concentration and higher temperature the hydrolysis produced more xylose monomers in a comparatively shorter period of reaction time. Xylose is the most abundant monomeric sugar in the hydrolysate. The other comparatively small amounts of monomeric sugars include arabinose, glucose, rhamnose, mannose and galactose. Acetic acid, formic acid, furfural, HMF and other byproducts are inevitably generated during the acid hydrolysis process. Short reaction time is preferred for the hydrolysis of hot-water wood extracts. Acid hydrolysis presents a perfect opportunity for the removal or separation of aromatic materials from the wood extract/hydrolysate. The hot-water wood extract hydrolysate, after solid-removal, can be purified by Nano-membrane filtration to yield a fermentable sugar stream. Fermentation products such as ethanol can be produced from the sugar stream without a detoxification step.  相似文献   

17.
Bacteria were isolated from the surface of two samples of American pine wood nematodes to identify methods of controlling pine wilt disease. The dominant bacterial strains were identified, and their toxicity and pathogenicity, in addition to their competitiveness with other pathogenic bacteria, were measured to ascertain how bacteria on the surface of American pine wood nematodes might be used to prevent and control pine wilt disease. The bacterial isolates show that the dominant bacteria carried by the two samples of pine wood nematodes are US4, US5, Smal‐007 and Rrad‐006. Based on routine staining, morphological observation and 16S rDNA sequence analysis, the four strains were identified as Delftia lacustris, Pseudomonas putida, Stenotrophomonas maltophilia and Rhizobium nepotum. The incubation of four dominant bacterial strains and Chinese dominant bacterial strains on the surface of aseptic nematodes and in nutrient broth showed that Smal‐007 and Rrad‐006 have strong competitiveness on the surface of pine wood nematodes. Using a bacterial culture medium to measure the propensity of pine seedlings to wilt, all the American dominant bacterial strains were shown to be less toxic than the Chinese dominant strains. If pine seedlings are inoculated with both bacterial and aseptic pine wood nematodes, American dominant bacterial strains present less pathogenicity than the Chinese dominant bacterial strains. In particular, Smal‐007 and Rrad‐006 show the lowest pathogenicity. If pine seedlings are inoculated with both bacterial and wild pine wood nematodes, American dominant bacterial strains significantly reduce the pathogenicity of wild pine wood nematodes isolated from Zhejiang Province, China. The effects of Smal‐007 and Rrad‐006 are confirmed as the most prominent. The American dominant strains Smal‐007 and Rrad‐006 satisfy two main requirements: excellent repulsion performance and low pathogenicity. Therefore, they can be used as candidate strains for biocontrol bacteria.  相似文献   

18.
Abstract

Increasing population growth and industrialization are continuously oppressing the existing energy resources, elevating the pollution and global fuel demand. Various alternate energy resources can be utilized to cope with these problems in an environment-friendly fashion. Currently, bioethanol (sugarcane, corn-derived) is one of the most widely consumed biofuels in the world. Lignocellulosic biomass is yet another attractive resource for sustainable bioethanol production. Pretreatment step plays a crucial role in the lignocellulose to bioethanol conversion by enhancing cellulose susceptibility to enzymatic hydrolysis. However, economical lignocellulose pretreatment still remains a challenging job. Ionic liquids (ILs), especially 1-ethyl-3-methylimidazolium acetate (EmimAc), is an efficient solvent for cellulose dissolution with improved enzymatic saccharification kinetics. To increase the process efficiency as well as recyclability of IL, water is shown as a compatible cosolvent for lignocellulosic pretreatment. The performance analysis of IL–water mixture based on the molecular level understanding may help to design effective pretreatment solvents. In this study, all-atom molecular dynamics simulation has been performed using EmimAc–water mixtures to understand the behavior of cellulose microcrystal containing eight glucose octamers at room and pretreatment temperatures. High-temperature simulation results show effective cellulose chain separation where cellulose–acetate interaction is found to be the driving force behind dissolution. It is also observed that pretreatment with 50 and 80% IL mixture is efficient in decreasing cellulose crystallinity. At a high IL concentration, water exists in a clustered network which gradually spans into the medium with increasing water fraction leading to loss of its cosolvation activity.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Brown rot fungi uniquely degrade wood by creating modifications thought to aid in the selective removal of polysaccharides by an incomplete cellulase suite. This naturally successful mechanism offers potential for current bioprocessing applications. To test the efficacy of brown rot cellulases, southern yellow pine wood blocks were first degraded by the brown rot fungus Gloeophyllum trabeum for 0, 2, 4, and 6 weeks. Characterization of the pine constituents revealed brown rot decay patterns, with selective polysaccharide removal as lignin compositions increased. G. trabeum liquid and solid state cellulase extracts, as well as a commercial Trichoderma reesei extract (Celluclast 1.5 L), were used to saccharify this pretreated material, using β-glucosidase amendment to remove limitation of cellobiose-to-glucose conversion. Conditions varied according to source and concentration of cellulase extract and to pH (3.0 vs. 4.8). Hydrolysis yields were maximized using solid state G. trabeum extracts at a pH of 4.8. However, the extent of glucose release was low and was not significantly altered when cellulase loading levels were increased threefold. Furthermore, Celluclast 1.5 L continually outperformed G. trabeum cellulase extracts, although extent of glucose release never exceeded 22.0%. Results suggest methodological advances for utilizing crude G. trabeum cellulases and imply that the suboptimal hydrolysis levels obtained with G. trabeum and Celluclast 1.5 L cellulases, even at high loading levels, may be due to brown rot modifications insufficiently distributed throughout the pretreated material.  相似文献   

20.
The use of microwave radiation was proposed for the intensification of the pine wood carboxymethylation process performed without prior separation into individual components. To obtain the carboxymethylated pine wood in the form of potassium salt, the pine wood was treated with potassium hydroxide and monochloroacetic acid in 2-propanol media. The composition and properties of the resulting products were studied. Carboxymethylated cellulose was extracted from the carboxymethylated pine wood. It was found that the increase of the microwave radiation power (from 210 to 700 W) and of the duration of the first and second carboxymethylation stages (20–30 sec) increases the content of carboxymethyl groups (18.3–25.6%). The solubility of the potassium salts of the carboxymethylated pine wood (10–18%) was abnormally low as compared with that of the sodium salts at similar content of carboxymethyl groups. The viscosity of the aqueous solutions of the carboxymethylated pine wood and the carboxymethyl cellulose extracted from it was studied. It is shown that the samples obtained using the microwave radiation power of 210 W are characterized by abnormal flow curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号