首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin.  相似文献   

2.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

3.
The influence of a low-sodium (LS) diet was assessed on the cardiac and renal alterations and pro-oxidant effect associated with a 10-day infusion of angiotensin II (200 or 400 ng. kg(-1). min(-1), osmotic pumps). Tail-cuff pressure (TCP), albuminuria, and renal blood flow were determined at the end of the experiments. Heart weight index (HWI) and production of superoxide anion (O(2)(-).) by the left ventricle and H(2)O(2) by the aorta was measured with the use of bioluminescence. Although the final TCP was similar in LS and normal sodium (NS) rats infused with high and low doses of angiotensin II, respectively, the increase in HWI was prevented by the LS diet. Sodium restriction reduced the rise in albuminuria without a change in the renal effect of angiotensin II. The increased production of O(2)(-). and H(2)O(2) observed in NS rats was abrogated in LS rats. The beneficial influence of dietary sodium restriction on target organ damage induced by angiotensin II is independent of arterial pressure reduction and possibly related to attenuation of the prooxidant effect of the peptide.  相似文献   

4.
Yang Ye  Liang Li 《FEBS letters》2009,583(18):2997-20
The RhoA/Rho-kinase (ROCK) pathway is involved in angiotensin (Ang) II-induced cardiac hypertrophy. However, it is still unclear whether inhibition of farnesylpyrophosphate (FPP) synthase can attenuate Ang II-induced hypertrophic responses, and whether it involves the RhoA/ROCK pathway. The anti-hypertrophic effects of inhibition of FPP synthase with alendronate in Ang II-cultured neonatal cardiomyocytes were partially reversed by geranylgeranyol (GGOH) and were mimicked by GGTI-286, a geranylgeranyl transferase-I inhibitor, C3 exoenzyme, an inhibitor of Rho, or Y-27632, an inhibitor of ROCK. Pull-down assay showed alendronate reduced-active RhoA by Ang II was also partially antagonized by GGOH. This study revealed that the inhibition of FPP synthase by alendronate reduces RhoA activation by diminishing geranylgeranylation which prevents Ang II-induced hypertrophic responses in neonatal cardiomyocytes.

Structured summary

MINT-7260047: Rhotekin-RBD (uniprotkb:Q9BST9) physically interacts (MI:0915) with Rhoa (uniprotkb:P61589) by pull down (MI:0096)  相似文献   

5.
Molecular Biology Reports - Aldosterone produced in adrenal glands by angiotensin II (Ang II) is known to elicit myocardial fibrosis and hypertrophy. This study was designed to test the hypothesis...  相似文献   

6.
Li R  Zheng W  Pi R  Gao J  Zhang H  Wang P  Le K  Liu P 《FEBS letters》2007,581(17):3311-3316
Activation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) has been recently reported to inhibit vascular inflammatory response and prevent cardiac hypertrophy. However, it is unclear how the activation of PPAR-alpha regulates hypertrophic response. In the present study, we found that application of fenofibrate and overexpression of PPAR-alpha inhibited endothelin-1 (ET-1)-induced phosphorylation of protein kinase B (Akt) at Ser473 and glycogen synthase kinase3beta (GSK3beta) at Ser9, and prevented ET-1-induced nuclear translocation of NFATc4 in cardiomyocytes. Moreover, co-immunoprecipitation studies showed that fenofibrate strongly induced the association of nuclear factor of activated T cells (NFATc4) with PPAR-alpha. These results suggest that activation of PPAR-alpha inhibits ET-1-induced cardiac hypertrophy through regulating PI3K/Akt/GSK3beta and NFAT signaling pathways.  相似文献   

7.
Cardiomyopathy involves changes in myocardial ultrastructure and cardiac hypertrophy. Angiotensin II (AngII) has previously been shown to stimulate the expression of IGF-2 and IGF-2R in H9c2 cardiomyoblasts and increase of blood pressure, and cardiac hypertrophy. Estrogen receptors (ERs) exert protective effects, such as anti-hypertrophy in cadiomyocytes. Tanshinone IIA (TSN), a main active ingredient from a Chinese medical herb, Salvia miltiorrhiza Bunge (Danshen), was shown to protect cardiomyocytes hypertrophy by different stress signals. We aimed to investigate whether TSN protected H9c2 cardiomyocytes from AngII-induced activation of IGF-2R pathway and hypertrophy by mediating through ERs. AngII resulted in H9c2 cardiomyoblast hypertrophy and increased inflammatory molecular markers. These were down-regulated by TSN via estrogen receptors. AngII resulted in elevation in MAPKs, IGF-2R and hypertrophic protein markers. These, again, were reduced by addition of the phytoestrogen with activation of ERs. Finally, AngII induced phosphorylation of heat shock factor-1 (HSF1) and decreased sirtuin-1 (SIRT1). In addition, AngII also caused an increase in distribution of IGF-2R molecules on cell membrane. In contrast, TSN reduced HSF1 phosphorylation and cell surface IGF-2R while elevating SIRT1 via ERs. TSN was capable of attenuating AngII-induced IGF-2R pathway and hypertrophy through ERs in H9c2 cardiomyoblast cells.  相似文献   

8.
9.
Genistein, an isoflavone and a rich constituent of soy, possesses important regulatory effects on nitric oxide (NO) synthesis and oxidative stress. Transient and low release of NO by endothelial nitric oxide synthase (eNOS) has been shown to be beneficial, while high and sustained release by inducible nitric oxide synthase (iNOS) may be detrimental in pathological cardiac hypertrophy. The present study was designed to evaluate whether genistein could prevent isoproterenol-induced cardiac hypertrophy in male Wistar rats (150-200 g, 10-12 weeks old) rats. Isoproterenol (5 mg·(kg body weight)(-1)) was injected subcutaneously once daily for 14 days to induced cardiac hypertrophy. Genistein (0.1 and 0.2 mg·kg(-1), subcutaneous injection once daily) was administered along with isoproterenol. Heart tissue was studied for myocyte size and fibrosis. Myocardial thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase levels, and 1-OH proline (collagen content) were also estimated. Genistein significantly prevented any isoproterenol-induced increase in heart weight to body weight ratio, left ventricular mass (echocardiographic), myocardial 1-OH proline, fibrosis, myocyte size and myocardial oxidative stress. These beneficial effects of genistein were blocked by a nonselective NOS inhibitor (L-NAME), but not by a selective iNOS inhibitor (aminoguanidine). Thus, the present study suggests that the salutary effects of genistein on isoproterenol-induced cardiac hypertrophy may be mediated through inhibition of iNOS and potentiation of eNOS activities.  相似文献   

10.
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy.  相似文献   

11.
Adipose tissue secretes a variety of bioactive factors, which can regulate cardiomyocyte hypertrophy via reactive oxygen species (ROS). In the present study we investigated whether apelin affects ROS-dependent cardiac hypertrophy. In cardiomyocytes apelin inhibited the hypertrophic response to 5-HT and oxidative stress induced by 5-HT- or H2O2 in a dose-dependent manner. These effects were concomitant to the increase in mRNA expression and activity of catalase. Chronic treatment of mice with apelin attenuated pressure-overload-induced left ventricular hypertrophy. The prevention of hypertrophy by apelin was associated with increased myocardial catalase activity and decreased plasma lipid hydroperoxide, as an index of oxidative stress. These results show that apelin behaves as a catalase activator and prevents cardiac ROS-dependent hypertrophy.  相似文献   

12.
Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)‐induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal‐regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II‐induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II‐induced EGFR activation is mediated by c‐Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c‐Src‐dependent EGFR activation may play an important role in Ang II‐induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II‐associated cardiac diseases.  相似文献   

13.
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2O2‐induced injury and hypoxia/reoxygenation‐induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs‐mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang‐II)‐induced cardiac hypertrophy. Following 14 days of Ang‐II infusion with osmotic mini‐pumps, a comparable hypertension was generated in both of CD38 knockout and wild‐type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild‐type mice compared with CD38 knockout mice. Consistently, RNAi‐induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang‐II‐stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang‐II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+‐NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.  相似文献   

14.
15.
Cardiac hypertrophy in rats was produced by aortic banding for 6 weeks and regression of hypertrophy in these experimental animals was induced by administration of angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/ day) for 6 weeks. The left ventricular muscle mass and systolic pressure were decrease upon treating the hypertrophied rats with enalapril. This drug also decreased the number of 1-adrenoceptors in hypertrophyied myocardium without any changes in -adrenoceptors. The regression of cardiac hypertrophy in spontaneously hypertensive rats by enalapril for 10 weeks was not associated with any alterations in 1-adrenoceptors in hypertrophied myocardium, but was decreased in -adrenoceptors. Effects of enalapril on extracellular matrix in the myocardium was also observed in regression of hypertrophy in which the type III collagen mRNA expression and collagen contents were reduced in comparison with those of hypertrophied myocardium. These results indicate that regression of cardiac hypertrophy is not alway associated with a decrease in the number of 1-adrenergic receptors and that the beneficial effects of enalapril in the hypertrophied heart in aortic banding animals may be of some specific nature.  相似文献   

16.
Circulating catecholamines have been proposed as trophic agents for the heart. Denervation of the adrenal medullae, the major source of plasma epinephrine, totally blocked left ventricular hypertrophy after aortic coarctation in the dog. The level of epinephrine after adrenal medullary cholinergic denervation dropped to a mean of 10 pg/ml within 48 hours compared to 317 pg/ml in coarcted dogs with intact adrenal innervation, and 116 pg/ml in sham-coarcted controls. Decreased epinephrine levels were concomitant with a decrease in the heart weight to body weight ratios. These data implicate epinephrine as the specific hormone regulating cardiac hypertrophy.  相似文献   

17.
Cardiac-specific overexpression of the catalytic subunit of protein phosphatase type 1 (PP1) in mice results in hypertrophy, depressed contractility, propensity to heart failure, and premature death. To further address the role of PP1 in heart function, PP1 mice were crossed with mice that overexpress a functional COOH-terminally truncated form of PP1 inhibitor-2 (I-2(140)). Protein phosphatase activity was increased in PP1 mice but was normalized in double transgenic (DT) mice. The maximal rates of contraction (+dP/dt) and of relaxation (-dP/dt) were reduced in catheterized PP1 mice but normalized in DT mice. Similar contractile abnormalities were observed in isolated, perfused work-performing hearts and in whole animals by means of echocardiography. The increased absolute and relative heart weights observed in PP1 mice were normalized in DT mice. Histological analyses indicated that PP1 mice had significant cardiac fibrosis, which was absent in DT mice. Furthermore, PP1 mice exhibited an age-dependent increase in mortality, which was abrogated in DT mice. These results indicate that I-2 overexpression prevents the detrimental effects of PP1 overexpression in the heart and further underscore the fundamental role of PP1 in cardiac function. Therefore, PP1 inhibitors such as I-2 could offer new therapeutic options to ameliorate the deleterious effects of heart failure.  相似文献   

18.
Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1–AMPK–eNOS signaling axis.  相似文献   

19.
It is well-recognized that excessive angiotensin II (ANG II) can mediate progressive renal injury. Previous studies by us and others have indicated that dopamine may modulate actions of ANG II in the kidney. The current studies investigated whether altering intrarenal dopamine levels affected ANG II-mediated renal fibrosis. We utilized a model of increased intrarenal dopamine, catechol-O-methyl-transferase knockout (COMT KO) mice, which have increased kidney dopamine levels due to deletion of a major intrarenal dopamine-metabolizing enzyme. In wild-type mice, chronic ANG II infusion increased renal expression of both of the major dopamine-metabolizing enzymes, COMT and monoamine oxidase. After 8 wk of ANG II infusion, there were no significant differences in blood pressure between wild-type and COMT KO mice. Compared with wild-type, COMT KO mice had decreased albuminuria and tubulointerstitial injury. In response to ANG II infusion, there was decreased expression of both glomerular and tubulointerstitial injury markers (fibronectin, connective tissue growth factor, fibroblast-specific protein-1, collagen I, podocyte vascular endothelial growth factor) in COMT KO mice. We recently reported that ANG II-mediated tubulointerstitial fibrosis is mediated by src-dependent epidermal growth factor receptor (EGFR) activation. In aromatic l-amino acid decarboxylase knockout (AADC KO) mice, a model of intrarenal dopamine deficiency due to selective proximal tubule AADC deletion, which inhibits intrarenal dopamine synthesis, ANG II infusion further increased expression of p-src and pTyr845-EGFR. In contrast, their expression was markedly attenuated in COMT KO mice. These results demonstrate a role for intrarenal dopamine to buffer the detrimental effects of ANG II upon the kidney.  相似文献   

20.
Fu MG  Wang XH  Jiang ZS  Pang YZ  Liu NK  Tang CS 《生理学报》1999,51(5):597-601
本研究观察了钙调神经磷酸酶依赖的信号通路在血管紧张素Ⅱ诱导的大鼠心肌细胞肥大中的作用。在AngⅡ刺激的大鼠心肌细胞肥大模型上,应用环孢素A(CsA)阻断CaN通路,观察心肌细胞^3H-亮氨酸掺入,CaN,MAPK及PKC活性的变化。结果表明,AngⅡ(10^-7mol/L)刺激大鼠心肌细胞^3H-亮氨酸掺入较对照组增高46%(P〈0.01),CsA(0.5-5μg/ml)可以浓度依赖性方式抑制An  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号