首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emissions of methane (CH4) and carbon dioxide (CO2) from spent mycelia of the mold Penicilium notatum and sludge from the effluent treatment facility (ETPS) of a pharmaceutical industry were estimated twice during a two-week composting before vermicomposting. These wastes are dumped in landfills or sometimes used in agricultural fields and no reports are available on their greenhouse gas producing potentials. The solid wastes contained appreciable organic carbon and nitrogen while very high Fe, Mn and Zn were found in ETPS only. Pure wastes did not support germination of Vigna radiata L. while mixing soil with ETPS and spent mycelia at the ratios of 12:1 and 14:1 led to 80% and 50% germination, respectively. The wastes were mixed with cowdung at the ratios of 1:1, 1:3 and 3:1 for composting. Carbon dioxide emissions were always significantly higher than CH4 emissions from all the treatments due to prevalence of aerobic condition during composting. From some treatments, CH4 emissions increased with time, indicating increasing activity of anaerobic bacteria in the waste mixtures. Methane emissions ranged from 21.6 to 231.7 microg m(-2) day(-1) while CO2 emissions were greater than thousand times at 39.8-894.8 mg m(-2) day(-1). The amount of C emitted as CH4-C and CO2-C from ranged from 0.007% to 0.081% of total C composted. Cowdung emitted highest CH4 followed by spent mycelia and ETPS while ETPS emitted more CO2 than spent mycelia but lesser than cowdung. Global warming potential of emitted CH4 was found to be in the range of 10.6-27.7 mg-CO2-equivalent on a 20-year time horizon. The results suggest that pharmaceutical wastes can be an important source of CH4 and CO2 during composting or any other stockpiling under suitable moisture conditions. The waste mixtures were found not suitable for vermicomposting after two weeks composting and earthworms did not survive long in the mixtures.  相似文献   

2.
The change in stored carbon (C) stocks was assessed for a 700 km2 areawhere forest cover decreased from 60% to 10% in the last 30 years. At the same time, the area under coffee increased from 7% to 70% with a gradual evolution from open "sun coffee" systems to multi-strata "shade coffee" systems that providea partial compensation for C loss. The use of a generic tropical forest rather than tree-specific allometric equation can lead to substantial (up to 100%) overestimates of aboveground biomass depending on wood density and tree shape. The shoot:root ratio (biomass) of coffee shifted with age, from the 4:1 value often assumed for tropical trees to 2:1. Annual aboveground C stock accumulation rates during the establishment stage after slash-and- burn land clearing were 1, closeto 2 or 3.5 Mg C ha-1a-1 for sun coffee, shade coffee and fallow regrowth, respectively. Forest remnants, shade coffee and sun coffee had soil C stocks in the upper 30 cm of the soil that were 79%, 60% or 45%, respectively, of the values expected for primary forest in Sumatra. Total C stock (time averaged, above - 0.3m in the soil) for forest, shade and sun coffee was 262, 82 and 52 Mg C ha-1, respectively. In the 1970-1984 period, while forest cover was reduced from 59.5%to 19.7%, the landscape lost on average 6.8 Mg C ha-1 a-1. In the 1984-2000 period forest cover was further reduced to 12.6%, but the landscape lost only 0.39Mg C ha-1 a-1, as forest loss was partially compensated by an increase in shadecoffee systems. Conversion of all current sun coffee to shade coffee systems while protecting the remaining forest, could increase average landscape level C stocks by 10 Mg ha-1 over a time frame of say 20 years, or 0.5 Mg C ha-1 a-1.  相似文献   

3.
The change in stored carbon (C) stocks was assessed for a 700 km~2 area where forestcover decreased from 60% to 10% in the last 30 years. At the same time, the area under coffee increased from 7% to 70% with a gradual evolution from open "sun coffee" systems to multi-strata "shade coffee" systems that provide a partial compensation for C loss. The use of a generic tropi-cal forest rather than tree-specific allometric equation can lead to substantial (up to 100%) overes-timates of aboveground biomass depending on wood density and tree shape. The shoot: root ratio (biomass) of coffee shifted with age, from the 4∶1 value often assumed for tropical trees to 2∶1.Annual aboveground C stock accumulation rates during the establishment stage after slash-and-burn land clearing were 1, close to 2 or 3.5 Mg C ha~(-1)a~(-1) for sun coffee, shade coffee and fallowregrowth, respectively. Forest remnants, shade coffee and sun coffee had soil C stocks in the up-per 30 cm of the soil that were 79%, 60% or 45%, respectively, of the values expected for primary forest in Sumatra. Total C stock (time averaged, above-0.3 m in the soil) for forest, shade and sun coffee was 262, 82 and 52 Mg C ha~(-1), respectively. In the 1970-1984 period, while forest cover was reduced from 59.5% to 19.7%, the landscape lost on average 6.8 Mg C ha~(-1) a~(-1). In the1984-2000 period forest cover was further reduced to 12.6%, but the landscape lost only 0.39 MgC ha~(-1) a~(-1), as forest loss was partially compensated by an increase in shade coffee systems. Conversion of all current sun coffee to shade coffee systems while protecting the remaining forest,could increase average landscape level C stocks by 10 Mg ha~(-1) over a time frame of say 20 years,or 0.5 Mg C ha~(-1) a~(-1).  相似文献   

4.
Microbes perform an important role in the solid-state fermentation (SSF) process, and bacterial communities are more or less abundant depending on the starting materials and the composting procedure. In this study, high-throughput sequencing was used to investigate the changes in bacterial communities in different composting piles containing spent pig litter and distiller grains in five dry weight ratios, i.e., 100% distiller grains (treatment 1), 75% distillers grains/25% spent pig litter (treatment 2), 50% distillers grains/50% spent pig litter (treatment 3), 25% distillers grains/75% spent pig litter (treatment 4), and 100% spent pig litter (treatment 5). The results showed that the fermentation time of the thermophilic stage was prolonged with an appropriate content of distiller grains. The alpha-diversity analysis showed that the variation in bacterial richness and diversity in the various treatments (except treatment 5) was greater in the high-temperature stage than in the inception stage and then was slightly lower in the stabilization stage than in the thermophilic stage. The relative abundance of the predominant bacterial communities differed during different composting stages except in treatment 5. The abundant bacterial communities were similar among the treatments with different proportions of distiller grains (treatments 2, 3, and 4) during the high-temperature stage but differed during the stabilization stage, as increasing proportions of distiller grains increased the relative abundance of the phyla Proteobacteria and Firmicutes, and decreased that of Actinobacteria. Additionally, principal coordinate analysis (PCoA) showed that the bacterial communities in treatments 1, 2, 3, and 4 during the initial stage (day 0) were different from those observed during two other stages (day 10 and day 53), while treatment 5 showed only slight variations in the bacterial community structure in response to changes in the composting process. The results indicated that spent pig litter is not suitable for single-material composting and the addition of an appropriate amount of distiller grains can improve the fermentation process. The understanding of the microbial community diversity at molecular level provided a theoretical basis for the optimization of spent pig litter and/or distiller grain fermentation.  相似文献   

5.
Adi AJ  Noor ZM 《Bioresource technology》2009,100(2):1027-1030
Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.  相似文献   

6.
The use of wooden crates for composting a mixture of 70% grass, (Digitaria decumbens), and 30% coffee pulp, combined with 2% Ca(OH)(2), was studied as a method for preparing substrate for the cultivation of Pleurotus ostreatus. Crate composting considerably modified the temperature pattern of the substrate in process, as compared to pile composting, where lower temperatures and less homogeneous distributions were observed. Biological efficiencies varied between 59.79% and 93% in the two harvests. Based on statistical analysis significant differences were observed between the treatments, composting times and in the interactions between these two factors. We concluded that it is possible to produce P. ostreatus on a lignocellulosic, non-composted, non-pasteurized substrate with an initial pH of 8.7, and that composting for two to three days improves the biological efficiency.  相似文献   

7.
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55 degrees C, manure packing at 25 degrees C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 10(6) CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55 degrees C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.  相似文献   

8.
This paper discusses the application of an LCt model for solid waste management systems in Malaysia. The model was used to analyze the environmental and economic impacts of municipal waste management systems in Malaysia. In the first part of the study, the LCI model was adapted to analyze waste management systems of four selected cities: Kuala Lumpur and Penang to represent urban areas; Seremban to represent moderately urban areas and Muar to represent rural areas. The results have shown that Kuala Lumpur and Penang had greater Global Warming Potential (GWP) and the costs spent on the solid waste management were also higher as compared to that in suburban areas. In the second part of the study, a detailed evaluation was carried out by analyzing the implication of introducing incineration and composting into the solid waste management system, and the results were compared with the current system, i.e. 100 % landfilled. The relative GWP was lower for incineration, but the cost was extremely high. The results also showed that the final solid waste to be disposed to landfills and the impact due to water emissions could be reduced significantly when incineration and composting were introduced.  相似文献   

9.
For economic, agricultural, and environmental reasons, composting is frequently used for organic waste recycling. One approach to limiting the potential risk from bacterial food-borne illnesses is to ensure that soil amendments and organic fertilizers are disinfected. However, more knowledge concerning the microbiological safety of composted substrates other than sludge and manure is necessary. Experimental in-vessel biowaste composts were used to study the survival of seeded Listeria monocytogenes, Salmonella enterica subsp. enterica serotype Enteritidis, and Escherichia coli. Four organic waste mixtures, containing various proportions of paper and cardboard, fruits and vegetables, and green waste, were composted in laboratory reactors with forced aeration. The physicochemical and microbiological parameters were monitored for 12 weeks during composting. The survival of bacteria over a 3-month period at 25 degrees C was assessed with samples collected after different experimental composting times. Strain survival was also monitored in mature sterilized composts. Nonsterile composts did not support pathogen growth, but survival of seeded pathogens was observed. Salmonella serovar Enteritidis survived in all composts, and longer survival (3 months) was observed in mature composts (8 and 12 weeks of composting). Mature biowaste composts may support long-term survival of Salmonella serovar Enteritidis during storage at room temperature. E. coli and L. monocytogenes survival was observed only in 4-week-old composts and never in older composts. Proper composting may prevent long-term survival of E. coli and L. monocytogenes. These results suggest that like composted sewage sludge or manure, domestic waste composts may support pathogen survival. Survival was not related to the physicochemical characteristics of the composts.  相似文献   

10.
The effects of Beauveria bassiana strains on coffee berry borers (CBB), which emerge from infested berries left on soil, and its impact on the infestation of coffee berries on tree branches were evaluated at two Experimental Stations (Naranjal-Caldas and Paraguaicito-Quindio) in the Colombian coffee zone. Using a completely randomized design with 10 repetitions, 50 coffee berries artificially infested with CBB were placed on the base of a coffee tree. Four treatments including B. bassiana strain Bb9205, a mixture of Cenicafé strains (Bb9001, Bb9024 and Bb9119), a commercial formulation of B. bassiana and a control (water) were sprayed with 1×109 conidia per tree. After 30 days, all fungal strains lowered the infestation levels of the coffee berries on the trees at both locations. The mixture of Cenicafé strains decreased the tree infestation between 50 and 30% at both locations. In the berries dissected from each treated tree, insect mortality was about 40% at both locations compared to 15% in the control. B. bassiana strains also decreased the insect population inside the newly infested berries on the trees by 55–75%. The mixture of Cenicafé strains was the most effective for decreasing insect populations. B. bassiana significantly decreased CBB populations that emerged from fallen, infested, coffee berries and reduced future insect generations.  相似文献   

11.
It is important to understand the structural characteristics of triacylglycerol (TAG), polysaccharides and trace elements in coffee beans, so that residues can be reutilized in applications including biodiesel oils. Here, we performed 1H and 13C solid-state NMR measurements on Indonesian green beans, roasted beans, and spent coffee grounds (SCGs). In the NMR spectra, there were liquid-like TAG containing linoleic acids based on observed signals of -CH=CH-CH2-CH=CH- group in an acyl chain, which play a role in decreasing TAG’s melting point. We found TAG was still abundant in the SCGs from NMR spectra. After lipids were removed from SCGs, the intensity of the TAG signal decreased considerably, with approximately 64% of the TAG was successfully extracted. We described the chemical structure of TAG in coffee beans and demonstrated that it is possible quantify the amount of extracted TAG using solid-state NMR.  相似文献   

12.
Pleurotus sajor-caju PL27, a white rot fungus, degraded up to 87% of the tannins in spent coffee grounds as a solid substrate over 32 days. Degradation of tannins was enhanced if potato and dextrose were included. The potential nutritive value of the substrate as animal feed may be improved by this process.Yum-Shing Wong is with the Biology Department, Chinese University of Hong Kong, Shatin, NT, Hong Kong. Xun Wang is a visiting scientist from the Research Institute of Food and Fermentation Industry, People's Republic of China.  相似文献   

13.
城市污泥与稻草堆肥中邻苯二甲酸酯(PAEs)的研究   总被引:11,自引:5,他引:6  
将广州城市污泥与稻草进行翻堆、接菌-翻堆、连续通气和间歇通气4种方式的堆肥,应用GC/MS技术对堆肥中6种属于USEPA优控污染物的邻苯二甲酸醇化合物(PAEs)进行分析,探讨堆肥产物中PAEs的含量分布以及不同方式堆肥对PAEs的降解效果,结果表明,4种方式堆肥中PAEs总含量(∑PAEs)在9.815~17.832mg·kg-1之间,依次为翻堆(17.832mg·kg-1)>接菌-翻堆(13.927mg·kg-1)>间隙通气(10.765mg·kg-1)>连续通气(9.815mg·kg-1),堆肥中PAEs以邻苯二甲酸正二辛酯(DhOP)为主,占∑PAEs的82.2%~89.696,不同方式堆肥中∑PAEs的降解率为连续通气(45.71%)>间隙通气(40.4696)>接菌-翻堆(22.97%)>翻堆(1.3796)(平均降解率为27.63%),其中邻苯二甲酸二乙醇(DEP)、邻苯二甲酸正二丁酯(DnBP)和邻苯二甲酸丁基苄基酯(BBP)的降解率分别为95.7696~98.6896、79.5696~99.46%和87.42%~98.42%;但邻苯二甲酸二甲酯(DMP)和邻苯二甲酸正二辛酯的含量反而增加,邻苯二甲酸(2-乙基己基)酯(DEHP)在所有堆肥中均未检出。  相似文献   

14.
Zhu N 《Bioresource technology》2006,97(15):1870-1875
Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.  相似文献   

15.
Studies were carried out to evaluate the feasibility of using coffee industry residues, viz. coffee husk, coffee leaves and spent coffee ground as substrates in solid state fermentation (SSF) to cultivate edible mushrooms Pleurotus. Eight strains of Pleurotus ostreatus and two strains of Pleurotus sajor‐caju were screened on a medium prepared from aqueous extract of coffee husk and agar. Based on best mycelial growth (9.68 mm/day) and biomass production (43.4 mg/plate in 9 days at 24°C), the strain P. ostreatus LPB 09 was selected for detailed studies. SSF was carried out using these substrates under different moisture conditions (45–75%) and spawn rates (2.5–25%). In general, although a 25% spawn rate appeared superior, the 10% spawn rate was recommended for all the three substrates in view of the process economics, as there was not any significant difference in the increase with 10 to 15%. The ideal moisture content for mycelial growth was 60–65% for coffee husk and spent coffee ground, and 60–70% for coffee leaves. The biological efficiency (BE), which is defined as the ratio of the weight of fresh fruiting bodies to the weight of dry substrate, multiplied by 100, and which indicates the fructification ability of the fungus for utilizing the substrate, was best with coffee husk. With coffee husk as the substrate, the first fructification occurred after 20 days of inoculation, and the biological efficiency reached about 97% after 60 days. When coffee leaves were used as the substrate, no fructification was observed even upon prolonged cultivation. With spent ground as the substrate, the first fructification occurred 23 days after inoculation and the biological efficiency reached about 90% in 50 days. There was a significant decrease in the caffeine and tannin contents (61 and 79%, respectively) of coffee husk after 60 days. It was remarkable to observe that caffeine was adsorbed onto the fruiting body (0.157%), indicating that it was not completely degraded by the fungal culture. However, no tannins were found in the fruiting body, indicating that the fungal strain was capable of degrading them. The results showed the feasibility of using coffee husk and spent coffee ground as substrates without any pre‐treatment for the cultivation of edible fungi in SSF, and provided one of the first steps towards an economical utilization of these otherwise unutilized or poorly utilized residues.  相似文献   

16.
In this study, a new method for isolation of polyphenols (PP) from spent coffee grounds (SCG) and coffee silverskin (CS) is described. The method consisted of a mild hydrothermal pretreatment at 120°C, for 20 min, using a liquid-to-solid ratio of 20 mL/g. PP (determined as gallic acid equivalents, GAE) were the most abundant components in the extracts produced by this method, corresponding to 32.92 mgGAE/gSCG and 19.17 mgGAE/gCS, among which flavonoids corresponded to 8.29 and 2.73 mg quercetin equivalents/g of SCG and CS, respectively. Both extracts presented antioxidant activity but the results were higher for SCG extract, probably due to the highest content of PP present. Negligible effects (less than 1% solubilization) were caused by the hydrothermal pretreatment on cellulose, hemicellulose, and protein fractions of these materials. Some mineral elements were present in the extracts, with potassium being the most abundant. Hydrothermal pretreatment under mild conditions was demonstrated to be an efficient method to recover antioxidant PP from coffee residues.  相似文献   

17.
De-inking paper sludge (DPS) is rich in carbon (C) but poor in nitrogen (N). Thus, it has a high C:N ratio which limits the composting process. Accordingly, the goal of this study was to investigate the effect of three N treatments on DPS composting. Compost piles of 100 m3 were formed by mixing raw DPS with poultry manure and chicken broiler floor litter, giving on average 0.6%, 0.7% and 0.9% total N. The changes in physico-chemical parameters, total weight and fiber losses, and maturity of composting piles of DPS were monitored during 24 weeks. The compost piles had a neutral to alkaline pH throughout the study. Inorganic N decreased whereas organic N increased over time for all treatments. These changes in magnitude were different among N treatments resulting in a final total N content of 0.9% for the 0.6% N treatment whereas final total N contents of 0.7% and 0.9% N were measured for the 0.7% and 0.9% N treatments. The total weight, cellulose and hemicellulose losses were higher in 0.6% N treatment giving the lowest C:N ratio after 24 weeks of composting. However, none of the 24 week-old composts of DPS were mature based on their final C:N ratio and colorimetric test of maturity. Except for copper, their final total trace element contents meet most known standards or guidelines for organic soil conditioners. Overall, 0.6% N treatment was the best to enhance DPS composting using mechanical turning, but a period of more than 24 weeks was required to reach compost maturity.  相似文献   

18.
Theodore Munyuli 《Grana》2013,52(1):69-89
An on-farm pollination experiment was conducted during the June–August and November–February blooming seasons of 2007 to 2008, in 30 small-scale coffee fields characterised by different habitat and vegetation types. The study was conducted in order to determine the best pollinator groups for coffee in Uganda and to collect relevant field information and determine the pollination efficiency of different bee species. Results indicate that across blooming seasons, coffee flowers were visited by 24–36 bee species. Hypotrigona gribodoi was the most frequent flower visitor, comprising over 60% of 5941 bee-visits recorded. Foraging rate and pollination speed varied among bee species. Solitary bees foraged on more flowers than social bees, but they spent less time per flower visited. Solitary bees visited more coffee trees and fields, but deposited less pollen, whereas social bees visited less trees and coffee fields in the landscape, but deposited more pollen on flowers. Fruit set was of 87%, 64% and 0.9%, respectively, in hand-cross pollination, open pollination and controlled-pollination treatments. Fruit abortion due to self-pollination was insignificant in this study. There was variability in pollination efficiency of different bee species. Pollination efficiency varied more significantly with sociality than with other bee functional traits and was not significantly influenced by tongue length and bee body size. Single-flower visits by social and solitary bees resulted in 89.7% and 68.14% fruit set, respectively. The most efficient bee species was Meliponula ferruginea (98.3%) followed by Meliponula nebulata (97.1%). Thus, very good pollinator species were wild social bees (mainly stingless bees) as opposed to honeybees and solitary bees that were previously reported to be the best pollinators of coffee in Panama and Indonesia. Morphological and anatomical characteristics of the bee pollen storage features may explain the difference in foraging behaviour activities and in pollination efficiency of social and solitary afrotropical bee species visiting lowland coffee in Uganda. In addition, pollination efficiency was influenced by land-use intensity, field management systems and habitat types found in the immediate surroundings of coffee fields, but not by coffee field size, coffee genotypes and mass blooming wild vegetation. It is recommended to farmers to adopt pollinator-friendly conservation and farming practices such as keeping an uncultivated portion (25%–30%) of their farms as pollinator reservoirs, protecting semi-natural habitats found in the vicinity of coffee fields, as well as promoting high on-farm tree cover to benefit a functionally diverse pollinator community.  相似文献   

19.
Field trials were conducted in Guatemala to evaluate the importance of 1,4 diaminobutane (putrescine) in traps baited with ammonium acetate, trimethylamine, and putrescine. For the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), there were no differences in percentage of females captured in coffee and citrus or in percentage of males captured in citrus in traps with ammonium acetate and trimethylamine lures (females in coffee, 26.4 +/- 6.27%; females in citrus, 35.7 +/- 5.35%; males in citrus, 37.7 +/- 7.48%) versus ammonium acetate, trimethylamine, and putrescine lures (females in coffee, 36.6 +/- 9.64%; females in citrus, 41.1 +/- 5.18%; males in citrus, 37.1 +/- 6.09%). Percentage of males captured in coffee was reduced significantly when putrescine was not used with the ammonium acetate and trimethylamine (39.9 +/- 4.34 versus 31.6 +/- 5.29%). Lower percentages were captured in traps baited with ammonium acetate and putrescine, and the lowest percentages were captured in traps baited with putrescine and trimethylamine. When population level as indicated by capture in traps baited with ammonium acetate, trimethylamine, and putrescine was considered, a higher percentage of C. capitata males were captured in traps baited with all three components when one or more flies per trap per day were captured in coffee, and a higher percentage of females were captured when less than one fly per trap per day was captured in citrus. Percentage of the Mexican fruit fly, Anastrepha ludens (Loew), captured was significantly higher in traps baited with ammonium acetate and putrescine and significantly lower in traps baited putrescine and trimethylamine than in all other treatments. Results indicate that putrescine may be deleted when monitoring established populations of C. capitata but should be used in traps used to monitor A. ludens or to detect new infestations of C. capitata.  相似文献   

20.
Gu W  Zhang F  Xu P  Tang S  Xie K  Huang X  Huang Q 《Bioresource technology》2011,102(11):6529-6535
A simulated aerobic composting experiment was used to explore the effects of sulphur and Thiobacillusthioparus during six manure composting treatments. The addition of sulphur led to a decrease of the pH level within the range 6-6.3, which was lower than the control treatment (CK). The concentration of ammonium nitrogen in T1 (0.25% sulphur), T2 (0.5% sulphur), T3 (0.25% sulphur + T. thioparus) and T4 (0.5% sulphur + T. thioparus) were much higher than the ammonium N in CK. The results indicated that addition of sulphur could increase the concentration of ammonium N and reduce loss of nitrogen. However, excess sulphur had a negative effect on temperature and GI. Addition of T. thioparus could increase concentration of available S, alleviate these negative influences and reduce compost biological toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号