首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.  相似文献   

2.
In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600 °C), heating rate (10-50 °C/min) and nitrogen gas flow rate (50-200 cm3/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550 °C, sweeping gas flow rate of 100 cm3/min and heating rate of 50 °C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.  相似文献   

3.
Non-isothermal thermogravimetric analysis, under nitrogen and air atmospheres, has been applied to study the thermal degradation of wheat gluten and gluten-glycerol-based bioplastics. In order to explain experimental data, thermal degradation has been simulated using the so-called pseudo-components, which are related to protein fraction (mainly gliadin and glutenin), residual starch and plasticiser. Thus, the proposed models have been used to shed some light on the thermal decomposition of these materials, which have been found affected by their compositions and microstructures. Modelling confirms the experimental bioplastic and gluten isolate compositions, e.g. bioplastic moisture content, starch concentration and the expected gliadin/glutenin ratio. According to the simulation, the glycerol volatilisation is affected by bioplastic moisture content and hindered by the protein matrix. A fact pointing out that glycerol/water blend plays relevant plasticizing roles in the protein matrix through diverse physicochemical interactions.  相似文献   

4.
澳大利亚森林火灾的管理与火生态的研究   总被引:9,自引:1,他引:9  
澳大利亚是火灾频发的地区.每年因森林火灾的危害都要造成相当的社会、经济损失及生态环境的破坏,故火生态的研究及火的管理在澳大利亚的生态学研究中一直占有重要地位.本文主要讨论了澳洲森林大火起燃的物理过程和机制、可燃物的特征、林火的特点、习性及对生态环境的影响和如何控制和减少火灾的危害性,达到对火进行利用、控制和管理的目的.  相似文献   

5.
The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 °C for 30 min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 °C and 155 °C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied.  相似文献   

6.
Louis Trabaud 《Oecologia》1994,99(3-4):379-386
The effects of burning on plant nutrient budgets and rates of carbonic gas and particulate matter emission during fires were evaluated in aQuercus coccifera (garrigue) shrubland. Nutrient levels were determined in field-collected pre-fire vegetation and combustion residues. The losses (increased elemental transfer) were calculated as the difference between the quantity of an element in the fuel (combustible standing vegetation plus litter) before burning and that present in the postfire residues (ash). Weight losses of elements are correlated with weight losses of burnt plant biomass. The relative order of nutrient losses was: N>C>Na>Ca>P>K>Mg. Estimated losses of N, C and P from combustible plant matter exceeded 98, 97 and 79% respectively. Copious N, C and P volatilization during burning was promoted by high concentrations of these elements in foliage and fine woody biomass of the aboveground vegetation and leaf litter of the garrigue. Elements were principally removed in the smoke. The quantities of gaseous emissions of CO2, CO and particulate matter produced were estimated.  相似文献   

7.
The ability of termites to attack solid wood and plywood treated with quaternary ammonia compounds and common fire retardants was evaluated. The plywood and solid-wood specimens treated with either monoammonium phosphate (MAP), diammonium phosphate (DAP), ammonium sulfate (AS), didecyl dimethyl ammonium chloride (DDAC), or didecyl dimethyl ammonium tetrafluoroborate (DBF) were subjected to termite resistance tests using the subterranean termites Coptotermes formosanus Shiraki under laboratory conditions. The lowest mass losses and the highest termite mortalities were obtained for the solid-wood and plywood specimens treated with DDAC and DBF. Higher termite mortalities were seen in the plywood specimens treated with the fire retardants when compared to the solid-wood specimens. The MAP, DAP, and AS treatments lowered the mass losses in both solid-wood and plywood specimens in comparison with control specimens; however, DBF and DDAC protected specimens well against termite attack at both concentration levels tested.  相似文献   

8.
A Candida blankii yeast isolate was grown in sugar cane bagasse hemicellulose hydrolysate at 38 degrees C in carbon-limited chemostat culture. The pretreatment of the acid hydrolysate prior to microbial cultivation consisted of partial neutralization with ammonia and sodium hydroxide, plus the addition of phosphorus, which was the only other growth-limiting nutrient apart from nitrogen. The cell yield coefficient on nitrogen was 16.78. The critical dilution rate was higher (0.35 h(-1)) in diluted hydrolysate than in undiluted hydrolysate (0.21 h(-1)). In undiluted hydrolysate at a dilution rate of 0.1 h(-1) and pH 4, where aseptic procedures proved unnecessary, the cell and protein yield coefficients were 0.53 and 0.26, respectively, and no residual carbon substrates (D-xylose, L-arabinose, D-glucose, and acetic acid) were detected. The cell yield on oxygen increased linearly as a function of dilution rate. The cellular content of protein, carbohydrate, and RNA also increased with an increase in dilution rate, whereas the DNA content decreased slightly. C. blankii has considerable potential for the production of single cell protein from hemicellulose hydrolysate, because of its ability to utilize all of the major carbon substrates in the hydrolysate at a low pH and at a relatively high temperature with a high protein yield. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
The dependence of pyrolysis behavior on the crystal state of cellulose   总被引:1,自引:0,他引:1  
Cellulose was dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride, and then regenerated from the solution by using different methods. Thermogravimetric analysis (TG)-Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the structure of the original and regenerated cellulose. Cellulose II or amorphous cellulose was obtained by pouring cellulose solution into de-ioned water or pouring de-ioned water into cellulose solution, respectively. The pyrolysis behavior of original and regenerated cellulose was tested in a fixed bed reactor. The pyrolysis of cellulose I gave high content of furfural and 1,4;3,6-dianhydro-alpha-d-glucopyranose in the liquid products, and cellulose II and amorphous cellulose gave high content of furfural and 5-(hydroxymethyl)-2-furancarboxyaldehyde, with 5-(hydroxymethyl)-2-furancarboxyaldehyde the highest for cellulose II and furfural the highest for amorphous cellulose. And the treatment of the cellulose samples favored the removal of oxygen in the form of CO2 in the pyrolysis.  相似文献   

10.
Spatio-temporal variability of the fire regime in the Kruger National Park (KNP) has been analyzed for the 1957–2011 period. Generalized linear mixed models have been used to assess the variability of fire metrics, such as the burnt area, the fire frequency and intensity for the entire area as well as for the main environmental classification systems (geology, soil, vegetation) and fire management zones. This analysis supports the hypothesis that the spatial pattern of fire regime is strongly influenced by the environmental template defined by climatic, geological, pedological and vegetation features. Moreover, contrary to some previous studies, together with the precipitation trend, fire management changes had a significant role in determining the temporal variability of the fire regime at the scale of KNP, particularly regarding the burnt area and the fire frequency.The complex interaction between the environmental template and management in determining the variability of the fire regime, as underscored by our study, defends the merit of adopting an adaptive planning/management based approach supported by quantitative analytic tools.  相似文献   

11.
12.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

13.
Ne'eman  Gidi  Izhaki  Ido 《Plant Ecology》1999,144(1):115-125
Soil samples from three microhabitats (gaps, beneath shrubs and beneath trees) in five stands of various post-fire ages (6–55 years) were collected in an east Mediterranean Aleppo pine Pinus halepensis forest. Total germinable seed bank densities varied between 300 and 1300 seeds per m2. Herbaceous taxa were the major constituents of the germinable seed bank in gaps, regardless of stand age. Perennials were the major components beneath shrubs in all stands except the youngest stand where herbaceous species were the major components in all microhabitats. Important tree and shrub species (e.g., Pinus halepensis, Quercus calliprinos, Pistacia lentiscus, Phillyrea latifolia) of the mature pine forest were not an important component of the soil seed bank and therefore, little resemblance was observed between the above-ground plant species composition and soil seed bank composition. This is consistent with the fact that these species regenerate by resprouting rather than by germination from the seed bank. Both microhabitats and forest-stands, which were of different ages, contributed to the variation in taxa richness, germinable seed density and diversity among samples. The effect of small-scale spatial heterogeneity (among microhabitats) was much more pronounced. In contrast to other studies, species richness, species diversity, and density of seed banks did not decrease with post-fire age. Moreover, stand age was a poor predictor for these attributes of the soil seed bank in an Aleppo pine forest. The heterogeneity plays an important role in conservation and management of this ecosystem.  相似文献   

14.
Fermentable sugar obtained from lignocellulosic material exhibits great potential as a renewable feedstock for the production of bio-ethanol. One potentially viable source of fermentable sugars is pyrolysis oil, commonly called bio-oil. Depending on the type of lignocellulosic material and the operating conditions used for pyrolysis, bio-oil can contain upwards of 10 wt% of 1,6-anhydro-β-d-glucopyranose (levoglucosan, LG), an anhydrosugar that can be hydrolyzed to glucose. This research investigated the extraction of levoglucosan from pyrolysis oil via phase separation, the acid-hydrolysis of the levoglucosan into glucose, and the subsequent fermentation of this hydrolysate into ethanol.Optimal selection of water-to-oil ratio, temperature and contact time yielded an aqueous phase containing a levoglucosan concentration of up to 87 g/L, a yield of 7.8 wt% of the bio-oil. Hydrolysis conditions of 125 °C, 44 min and 0.5 M H2SO4 resulted in a maximum glucose yield of 216% (when based on original levoglucosan), inferring other precursors of glucose were present in the aqueous phase. The aqueous phase contained solutes which inhibited fermentation, however, up to 20% hydrolysate solutions were efficiently fermented (yield = 0.46 g EtOH/g glucose; productivity = 0.55 g/L h) using high yeast inoculums (1 g/L in flask) and micro-aerophilic conditions.  相似文献   

15.
The poor and inconsistent physicochemical properties of bio-oil are inhibiting its industrialized production. We investigated the variability in properties of switchgrass bio-oil produced at three pyrolysis temperatures (T = 450, 500, and 550 °C) and three feedstock moisture contents (MC = 5%, 10%, and 15%) in a 3 × 3 factorial experiment in order to exploit opportunities to improve bio-oil properties through optimization of pyrolysis parameters. Results showed that even with the single type of feedstock and pyrolysis system, the two main factors and their interaction caused large variations in bio-oil yield and most of the measured physicochemical properties. Following improvements of bio-oil properties could be individually achieved by selecting an optimal pyrolysis condition (shown in parenthesis) comparing with the worst case: increase of bio-oil yield by more than twofold (MC = 10%, T = 450 °C), increase of pH by 20.4% from 2.74 to 3.3 (MC = 10%, T = 550 °C), increase of higher heating value by 18.1% from 16.6 to 19.6 MJ/kg (MC = 10%, T = 450 °C), decrease of density by 5.9% from 1.18 to 1.11 g/cm3 (MC = 5%, T = 550 °C), decrease of water content by 36% from 31.4 to 20.1 wt.% (MC = 5%, T = 450 °C), decrease of viscosity by 40% from 28.2 to 17 centistokes (MC = 5%, T = 550 °C), decrease of solid content by 57% from 2.86 to 1.23 wt.% (MC = 15%, T = 550 °C), and decrease of ash content by 41.9% from 0.62 to 0.36 wt.% (MC = 15%, T = 550 °C). There is no single, clear-cut optimal condition that can satisfy the criteria for a bio-oil product with all the desired properties. Trade-offs should be balanced according to the usage of the end-products.  相似文献   

16.
Effects of pretreatments with a white rot fungus, Ceriporiopsis subvermispora, and microwave hydrothermolysis of bagasse on enzymatic saccharification and fermentation were evaluated. The best sugar yield, 44.9 g per 100 g of bagasse was obtained by fungal treatments followed by microwave hydrothermolysis at 180 °C for 20 min. Fluorescent-labeled carbohydrate-binding modules which recognize crystalline cellulose (CjCBM3-GFP), non-crystalline cellulose (CjCBM28-GFP) and xylan (CtCBM22-GFP) were applied to characterize the exposed polysaccharides. The microwave pretreatments with and without the fungal cultivation resulted in similar levels of cellulose exposure, but the combined treatment caused more defibration and thinning of the plant tissues. Simultaneous saccharification and fermentation of the pulp fractions obtained by microwave hydrothermolysis with and without fungal treatment, gave ethanol yields of 35.8% and 27.0%, respectively, based on the holocellulose content in the pulp. These results suggest that C. subvermispora pretreatment could be beneficial part of the process to produce ethanol from bagasse.  相似文献   

17.
Livestock manure can be quickly converted into valuable products (H2, syn-gas and char) by low temperature gasification. Manure char combustion offers energy for the gasification reactions. In the paper, the influence of manure type and pyrolysis conditions on manure char reactivity is addressed. The results show that the oxidation behaviors of manure char are dependent strongly on manure type and pyrolysis conditions employed. The large difference between the oxidation behaviors of pig and hen manure chars can be attributed to the difference in the organic materials and minerals of the samples. High final temperature, flash pyrolysis and water steam atmosphere used for char preparation promote the resultant char reactivity.  相似文献   

18.
When the wild type Cellulomonas flavigena was grown on glycerol, xylose or cellobiose, it produced basal levels of carboxymethyl-cellulase (CMCase), filter-paperase (FPase) and xylanase activities. By comparison, a catabolic derepressed mutant strain of the same organism produced markedly higher levels of these enzymes when grown on the same carbon sources. Sugar-cane bagasse induced both the wild type and the mutant strain to produce three- to eight-time higher levels of FPase and xylanase than was observed with xylose or cellobiose. Continuous culture was used to determine the minimal cellobiose or glucose concentrations that repress the enzyme synthesis in both strains. 2.5 g l(-1) glucose repressed FPase and xylanases from wild type, while 1.6 times more glucose was needed to repress the same activities in the PN-120 strain. In the same way, twofold more cellobiose was needed to reduce by 75% the CMCase and xylanase activities in the mutant compared to the wild type. The FPase in the presence of 4 g l(-1) cellobiose did not change in the same strain. Therefore, its derepressed and feedback resistant characters of PN-120 mutant are evident. On the other hand, isoelectrofocused crude extracts of mutant and wild strains induced by sugar-cane bagasse, did not show differences in protein patterns, however, the Schiffs staining was more intense in the PN-120 than in the wild strain. These results point out that the mutational treatment did not apparently change the extracellular proteins from mutant PN-120 and this could affect their regulation sites, since derepressed and feed-back resistant enzymes may be produced.  相似文献   

19.
Pyrolysis of olive and hazelnut bagasse biomass samples with two selected catalysts, namely activated alumina and sodium feldspar, have been conducted in a fixed-bed reactor. Experiments were carried out under certain pyrolysis conditions in a fixed-bed Heinze reactor. The catalyst was mixed with feedstock in different percentages. The effects of catalysts and their ratio (10%, 20%, 30% and 40% w/w) on the pyrolysis product yields were investigated and the results were compared with the results of experiments performed without catalyst under the same conditions. The maximum bio-oil yields for the bio-oils obtained from pyrolysis of olive bagasse were found as 37.07% and 36.67% on using activated alumina and sodium feldspar as catalysts, respectively, while these values were 27.64% and 31.68%, respectively, for the bio-oils from hazelnut bagasse. The oxygen contents of the bio-oils were also markedly reduced while the yield of bio-oil was reduced by the use of catalysts. The pyrolysis oils were examined using some spectroscopic and chromatographic analysis techniques. The results were compared with the petroleum fractions and the possibility of being a potential source of bio-oils was investigated.  相似文献   

20.
Abstract. We compared the effects of late dormant-season and late growing-season prescribed fires on herbaceous species in restored shortleaf pine- (Pinus echinata) grassland communities in the Ouachita Highlands of western Arkansas. Herbaceous species richness, diversity, and total forb and legume abundance increased following fire. Late growing-season burns reduced distribution and abundance of panicums (primarily Panicum boscii, P. dichotomum, and P. linearifolium) while late dormant-season burns increased Panicum distribution and abundance. Density of legumes (such as Stylosanthes biflora) increased following frequent or annual dormant-season fires. However, season of fire influenced the distribution and abundance of fewer than 10 % of the species. Fire plays an essential role in pine-grassland communities by creating and maintaining open canopy conditions that perpetuate understory herbaceous plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号