首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pyruvate oxidase of Escherichia coli is a homo-tetrameric enzyme which can be activated greater than 500-fold (kcat/Km) by limited proteolytic digestion with alpha-chymotrypsin in the presence of pyruvate and thiamine pyrophosphate. The cleavage produces an Mr 2000 peptide (the alpha-peptide) from each subunit and mimics the physiologically important activation of the enzyme by phospholipids. Moreover, the proteolytic cleavage results in the loss of the high affinity lipid-binding site of the enzyme. We now report the isolation and characterization of the alpha-peptide fragment which is cleaved from the carboxyl terminus of each subunit by protease activation. Both the site of cleavage and the sequence of the alpha-peptide have been determined by a combination of Edman degradation of the purified peptide and DNA sequence analysis of the gene encoding the oxidase. The cleavage site lies within a sequence of hydrophobic amino acids predicted to form a beta-sheet. Another segment of the alpha-peptide is predicted to form an amphipathic alpha-helix. Quantitative assessment of the amphipathic nature of this alpha-helix (Eisenberg, D. (1984) Annu. Rev. Biochem. 53, 595-623) gives a value very similar to the values for several helical peptides which spontaneously bind to the surface of phospholipid vesicles. From these analyses, we propose that the alpha-peptide may play a role in binding pyruvate oxidase to cell membrane phospholipids in vivo.  相似文献   

2.
Pyruvate oxidase of Escherichia coli, an enzyme greatly activated by phospholipids, is a tetramer of a Mr 62,000 subunit. We have utilized the differing electrophoretic mobilities of several mutant oxidases on native polyacrylamide gels to study the role of the quaternary structure of the enzyme in the activation process. We found that when two poxB gene alleles coexisted in cells, heterotetrameric species were formed in addition to homotetramers. The concentration of each tetrameric species varied according to the concentration of the different subunits present, and the distribution seemed virtually identical to those expected from random mixing. We showed that the intrinsic activity of pyruvate oxidase was not affected by interactions among the four subunits. However, binding of the enzyme to lipids, a property required for function in vivo, required that a tetramer contain at least two subunits capable of lipid binding. Our data fit the model proposed previously (Grabau, C., Chang, Y.-Y., and Cronan, J. E., Jr. (1989) J. Biol. Chem. 264, 12510-12519) in which the carboxyl termini of two subunits interact to form a functional lipid-binding domain. We also have detected oxidase activity in a form of oxidase of unusually high electrophoretic mobility. This form seems to be either a monomeric or a dimeric form (more probably the former) of the oxidase subunit.  相似文献   

3.
E. coli pyruvate oxidase (pyruvate:ferricytochrome b1 oxidoreductase, EC 1.2.2.2) is a peripheral membrane flavoenzyme which has been purified to homogeneity. In vivo the oxidase resides on the inner surface of the cytoplasmic membrane and is coupled to the bacterial electron transport chain. In vitro, the purified oxidase requires lipids for full enzymatic activity. Previous studies have characterized the conformational and energetic coupling between the lipid-binding site(s) and the catalytic active site. The affinity of the enzyme for phospholipids and detergents is significantly enhanced when the flavoprotein is in the reduced form, i.e., in the presence of pyruvate and the required cofactor, thiamin pyrophosphate. The lipid-binding studies were hindered due to the complicating factor of the self-association of the substrate-reduced flavoprotein. In this paper, fluorescence techniques are employed to measure the binding of a detergent-like activator to the oxidase. The experiments are performed at much lower protein concentrations than previously employed, so that protein aggregation is not a problem. The chromophore on the activator, 2-(N-decyl)aminonaphthalene-6-sulfonic acid is effective at quenching the pyruvate oxidase intrinsic tryptophan fluorescence. Quenching titrations are used to obtain the binding isotherm. AT DNS concentrations less than 10(-5) M, the results show a larger amount of DNS binding to the reduced flavoprotein than to the oxidized form of the enzyme. This is the concentration range where DNS is an effective activator of the enzyme. This represents a class of binding sites specifically found on pyruvate oxidase and not apparent in other proteins such as lysozyme or aldolase. At the DNS concentration which is optimum for activation approx. 20 molecules of DNS are bound per enzyme tetramer in the absence of the substrate. The pyruvate-reduced form of the enzyme binds about 40--50 molecules of DNS per tetramer. Qualitatively, the results are similar to what was previously found for both sodium dodecyl sulfate and cetyl trimethylammonium bromide. However, in both these cases, the amount of bound detergent was nearly an order of magnitude less than the values obtained using DNS.  相似文献   

4.
C Grabau  J E Cronan 《Biochemistry》1986,25(13):3748-3751
The pyruvate oxidase of Escherichia coli is a peripheral membrane flavoprotein that is dramatically activated by lipids. The enzyme strongly binds to phospholipid vesicles in vitro. In vivo, in addition to enzyme activation, binding is thought to be important to provide access of the enzyme to ubiquinone dissolved in the lipid bilayer. It was unclear if both or either of these attributes is needed for enzyme function in vivo. To differentiate between activation and lipid binding, we have constructed, using recombinant DNA techniques, a mutant gene that produces a truncated protein. The truncated protein lacks the last 24 amino acids of the C-terminus of the oxidase (due to introduction of a translation termination codon) and thus is closely analogous to the activated species produced in vitro by limited chymotrypsin cleavage [Recny, M.A., Grabau, C., Cronan, J.E., Jr., & Hager, L.P. (1985) J. Biol. Chem. 260, 14287-14291]. The truncated protein (like the protease-derived species) is fully active in vitro in the absence of lipid, and its activity is not further increased by addition of lipid activators. Moreover, the truncated enzyme fails to bind Triton X-114, a detergent that binds to and activates the wild-type oxidase. Strains producing the truncated protein were devoid of oxidase activity in vivo. This result indicates that binding to membrane lipids is specifically required for function of the oxidase in vivo; activation alone does not suffice.  相似文献   

5.
The region of beta-spectrin that is responsible for interactions with ankyrin was shown to comprise an ankyrin-sensitive lipid-binding site. Structural studies indicate that it exhibits a mixed 3(10)/alpha helical conformation and is highly amphipathic. These features together with the distinctively conserved sequence of the lipid-binding site motivated us to explore the mechanism of its interactions with biological membranes. A series of singly and doubly spin-labeled erythroid beta-spectrin-derived peptides was constructed, and the spin-label mobility and spin-spin distances were analyzed via electron paramagnetic resonance spectroscopy and two different calculation methods. The results indicate that in beta-spectrin, the lipid-binding domain, which is part of the 14(th) segment, has the topology of typical triple-helical spectrin repeat. However, it undergoes significant changes when interacting with phospholipids or detergents. A mechanism for these interactions is proposed in this paper.  相似文献   

6.
Cytochrome c oxidase of Nitrosomonas europaea reacts with not only the native cytochrome c (N. europaea cytochrome c-552) but also horse and yeast cytochromes c. The effects on its reactivity of various reagents were very different between the reactions with the native and eukaryotic cytochromes c as the electron donors. The oxidation of eukaryotic ferrocytochrome c by the oxidase was activated by addition of anionic detergents such as sodium dodecyl sulfate and sodium cholate, and anionic phospholipids such as cardiolipin, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine, while the reaction was not activated by Triton X-100, Tween 20, or phosphatidylcholine. However, the reaction with the native cytochrome c of the enzyme was hardly affected by any of the detergents and phospholipids mentioned above, while it was activated by the presence of poly-L-lysine.  相似文献   

7.
Purification and properties of mouse liver coproporphyrinogen oxidase   总被引:2,自引:0,他引:2  
Coproporphyrinogen oxidase was purified to homogeneity from mouse liver. The specific activity of the pure enzyme was 3500 nmol.h-1.mg-1; its apparent molecular mass (35 kDa) was confirmed by immunological characterization of the enzyme in a trichloroacetic-acid-precipitated total-liver-protein extract. The native enzyme appeared to be a dimer of 70 kDa as determined by gel filtration under nondenaturating conditions. The Km value for coproporphyrinogen III was 0.3 microM. The purified enzyme was activated by neutral detergents and phospholipids (affecting both Vmax and Km) but inhibited by ionic detergents. Reactivity toward sulfhydryl agents suggested the possible involvement of (an) SH group(s) for the activity. When compared to the previously purified coproporphyrinogen oxidases (from bovine liver and yeast), the mouse liver coproporphyrinogen oxidase appears to share many common catalytic properties with both enzymes. However, its apparent molecular mass is very different from that of the bovine liver enzyme (71.6 kDa) but identical to that found for the yeast (Saccharomyces cerevisiae) enzyme.  相似文献   

8.
Structural determinants of PLD2 inhibition by alpha-synuclein   总被引:7,自引:0,他引:7  
The presynaptic protein alpha-synuclein has been implicated in both neuronal plasticity and neurodegenerative disease, but its normal function remains unclear. We described the induction of an amphipathic alpha-helix at the N terminus (exons 2-4) of alpha-synuclein upon exposure to phospholipid vesicles, and hypothesized that lipid-binding might serve as a functional switch by stabilizing alpha-synuclein in an active (alpha-helical) conformation. Others have shown that alpha and beta-synucleins inhibit phospholipase D (PLD), an enzyme involved in lipid-mediated signaling cascades and vesicle trafficking. Here, we report that all three naturally occurring synuclein isoforms (alpha, beta, and gamma-synuclein) are similarly effective inhibitors of PLD2 in vitro, as is the Parkinson's disease-associated mutant A30P. The PD-associated mutant A53T, however, is a more potent inhibitor of PLD2 than is wild-type alpha-synuclein. We analyze mutations of the alpha-synuclein protein to identify critical determinants of human PLD2 inhibition in vitro. Deletion of residues 56-102 (exon 4) decreases PLD2 inhibition significantly; this activity of exon 4 may require adoption of an alpha-helical conformation, as mutations that disrupt alpha-helicity also abrogate inhibition. Deletion of C-terminal residues 130-140 (exon 6) completely abolishes inhibitory activity. In addition, PLD2 inhibition is blocked by phosphorylation at serine 129 or at tyrosine residues 125 and 136, or by mutations that mimic phosphorylation at these sites. We conclude that PLD2 inhibition by alpha-synuclein is mediated by a lipid-stabilized alpha-helical structure in exon 4 and also by residues within exon 6, and that this inhibition can be modulated by phosphorylation of specific residues in exons 5 and 6.  相似文献   

9.
Antiserum to crystallized fructosediphosphate aldolase B from human liver precipitated/inhibited the antigen in solution. It activated the mutant enzyme in liver extracts of 3 patients with hereditary fructose intolerance but not in 2 others. It was concluded that genetic variability existed between these patients. In vitro activation of a defective human enzyme, demonstrated here for the first time, indicates that in vivo restoration of activity of mutant enzymes may become feasible.  相似文献   

10.
Muscle and liver glycogen phosphorylase isozymes differ in their responsiveness to the activating ligand AMP. The muscle enzyme, which supplies glucose in response to strenuous activity, binds AMP cooperatively, and its enzymatic activity becomes greatly enhanced. The liver isozyme regulates the level of blood glucose, and AMP is not the primary activator. In muscle glycogen phosphorylase, the residue proline 48 links two secondary structural elements that bind AMP. This amino acid residue is replaced with a threonine in the liver isozyme; unlike the muscle enzyme, liver binds AMP noncooperatively, and the enzymatic activity is not greatly increased. We have substituted proline 48 in the muscle enzyme with threonine, alanine, and glycine and characterized the recombinant enzymes kinetically and structurally to determine if proline at this position is critical for cooperative AMP binding and activation. Importantly, all of the engineered enzymes were fully activated by phosphorylation, indicating that enzymatic activity was not compromised. Only the mutant enzyme with alanine at position 48 responds like the wild-type enzyme to the presence of AMP, indicating that proline is not absolutely required for full cooperative activation. The substitution of either threonine or glycine at this position, however, creates enzymes that no longer bind AMP cooperatively. The enzyme with threonine at position 48 further mimics the liver enzyme, in that the maximal enzymatic activity is also reduced. Significantly, the glycine substitution caused the enzyme to be fully activated by AMP, although binding was not cooperative. The hyperactivation of the glycine mutant by AMP suggests that the total free energy of activation has decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The region of β-spectrin that is responsible for interactions with ankyrin was shown to comprise an ankyrin-sensitive lipid-binding site. Structural studies indicate that it exhibits a mixed 310/α helical conformation and is highly amphipathic. These features together with the distinctively conserved sequence of the lipid-binding site motivated us to explore the mechanism of its interactions with biological membranes. A series of singly and doubly spin-labeled erythroid β-spectrin-derived peptides was constructed, and the spin-label mobility and spin-spin distances were analyzed via electron paramagnetic resonance spectroscopy and two different calculation methods. The results indicate that in β-spectrin, the lipid-binding domain, which is part of the 14th segment, has the topology of typical triple-helical spectrin repeat. However, it undergoes significant changes when interacting with phospholipids or detergents. A mechanism for these interactions is proposed in this paper.  相似文献   

12.
13.
14.
Micellar, discoidal complexes of human apolipoproteins A-I, A-II, C-I, C-II, C-III-1, and C-III-2 with egg phosphatidylcholine (egg-PC) and cholesterol were prepared by the cholate dialysis method. The complexes, isolated by gel filtration, had similar lipid and protein contents by weight, on the average: 1.77:0.083:1.0, egg-PC/cholesterol/apolipoprotein (w/w). The diameters of the discs, visualized by electron microscopy and estimated by gel filtration, ranged from 100 to 200 A. The alpha-helix content of the apolipoproteins in the complexes was from 50-72%, and their fluorescence properties indicated nonpolar, but quite varied environments for the tryptophan residues in the various complexes. Initial reactions of purified human lecithin: cholesterol acyltransferase with the complexes, adjusted to equal egg-PC concentrations, indicated that all the apolipoproteins activate the enzyme from 6-fold to 400-fold over control vesicles of egg-PC and cholesterol. In decreasing order of reactivity were the complexes with A-I, C-I, C-III-1, C-III-2, C-II, and A-II. These results indicate that aside from lipid-binding capacity and high amphipathic alpha-helix content, other structural features are required for optimal enzyme activation by apolipoproteins. Concentration and temperature dependence experiments gave similar apparent Km values, markedly different apparent Vmax, and very similar activation energies (about 19 kcal/mol), for the various complexes. These observations suggest that the rate-limiting enzymatic step of the reaction is common to all the complexes but that the activated enzyme levels differ from complex to complex. We propose that enzyme activation occurs upon binding to complexes via apolipoproteins. Addition of excess (5-fold) free apolipoprotein A-I or A-II to complexes resulted in the exchange of bound for free apolipoproteins and in loss of reactivity with the enzyme.  相似文献   

15.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

16.
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.  相似文献   

17.
Specific degradation of the phospholipid membrane of guinea-pig liver microsomal fraction with phospholipase A inactivated glucuronyltransferase. The inactivation was reversed by phosphatidylcholine and mixed microsomal phospholipid micelles at concentrations similar to those present in intact microsomal preparations. The other commonly occurring phospholipids did not reactivate phospholipase A-treated enzyme. Since the mixed microsomal phospholipids consisted mainly of phosphatidylcholine, it is concluded that the reactivation by phospholipids is phosphatidylcholine-specific. Reactivation was also achieved by low concentrations of the cationic detergents cetylpyridinium chloride and cetyltrimethylammonium bromide. Higher concentrations of these detergents inactivated the glucuronyltransferase activity of intact and phospholipase A-treated microsomal fractions. Anionic detergents were potent inactivators of the glucuronyltransferase activity of untreated and phospholipase A-treated microsomal fractions, whereas non-ionic detergents had little effect on the activity of either preparation. Measurements of the zeta-potentials of the micellar species used in this study showed that no obvious relationship existed between the zeta-potentials and the ability to reactivate glucuronyltransferase. However, high positive or negative zeta-potentials were correlated with the ability of the amphipathic compound to inactivate glucuronyltransferase.  相似文献   

18.
Binding of pyruvate oxidase alpha-peptide to phospholipid vesicles   总被引:1,自引:0,他引:1  
The alpha-peptide of pyruvate oxidase is a 23 residue peptide which is cleaved from the carboxy terminus of the enzyme during proteolytic activation by chymotrypsin (M. Recny et al. (1985) J. Biol. Chem. 260, 14287-14291). Cleavage of alpha-peptide results in the loss of the high affinity lipid-binding site in the enzyme. The beta-peptide of pyruvate oxidase is a 101 residue peptide which also is cleaved from the carboxy terminus of pyruvate oxidase. Cleavage of the beta-peptide from pyruvate oxidase results in the inactivation of the enzyme. The beta-peptide includes the alpha-peptide amino acid sequences at its carboxyl terminus. We now report on the binding of the alpha- and beta-peptides to phospholipid vesicles. Both peptides bind with equal and high affinity to phosphatidylcholine vesicles. We conclude from these results that the alpha-peptide furnishes the membrane-binding site which plays the physiologically important role in the activation of this peripheral membrane enzyme.  相似文献   

19.
To investigate the ability of a protein to accommodate potentially destabilizing amino acid substitutions, and also to investigate the steric requirements for catalysis, proline was substituted at different sites within the long alpha-helix that connects the amino-terminal and carboxyl-terminal domains of T4 lysozyme. Of the four substitutions attempted, three yielded folded, functional proteins. The catalytic activities of these three mutant proteins (Q69P, D72P, and A74P) were 60-90% that of wild-type. Their melting temperatures were 7-12 degrees C less than that of wild-type at pH 6.5. Mutant D72P formed crystals isomorphous with wild-type allowing the structure to be determined at high resolution. In the crystal structure of wild-type lysozyme the interdomain alpha-helix has an overall bend angle of 8.5 degrees. In the mutant structure the introduction of the proline causes this bend angle to increase to 14 degrees and also causes a corresponding rotation of 5.5 degrees of carboxyl-terminal domain relative to the amino-terminal one. Except for the immediate location of the proline substitution there is very little change in the geometry of the interdomain alpha-helix. The results support the view that protein structures are adaptable and can compensate for potentially destabilizing amino acid substitutions. The results also suggest that the precise shape of the active site cleft of T4 lysozyme is not critical for catalysis.  相似文献   

20.
Latent polyphenol oxidase was extracted and partially purified from grape cell suspension cultures. The enzyme was shown to be activated by polyamines. Activation of the enzyme increased with increasing polyamine concentrations and half-maximal activation was in the order of 8mM. Kinetic parameters, Km and Vm, were also calculated for the latent and activated enzymes. The activating effect of polyamines was studied at different pH values. Optimum pH was 4.5 for latent and activated enzymes. However, the highest degree of activation was obtained at pH 5. Activation caused a higher sensitivity of polyphenol oxidase to pH and temperature. The ability of polyamines to activate the enzyme may suggest a limited conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号