首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protofibrils are transient structures observed during in vitro formation of mature amyloid fibrils and have been implicated as the toxic species responsible for cell dysfunction and neuronal loss in Alzheimer's disease (AD) and other protein aggregation diseases. To better understand the roles of protofibrils in amyloid assembly and Alzheimer's disease, we characterized secondary structural features of these heterogeneous and metastable assembly intermediates. We chromatographically isolated different size populations of protofibrils from amyloid assembly reactions of Abeta(1-40), both wild type and the Arctic variant associated with early onset familial AD, and exposed them to hydrogen-deuterium exchange analysis monitored by mass spectrometry (HX-MS). We show that HX-MS can distinguish among unstructured monomer, protofibrils, and fibrils by their different protection patterns. We find that about 40% of the backbone amide hydrogens of Abeta protofibrils are highly resistant to exchange with deuterium even after 2 days of incubation in aqueous deuterated buffer, implying a very stable, presumably H-bonded, core structure. This is in contrast to mature amyloid fibrils, whose equally stable structure protects about 60% of the backbone amide hydrogens over the same time frame. We also find a surprising degree of specificity in amyloid assembly, in that wild type Abeta is preferentially excluded from both protofibrils and fibrils grown from an equimolar mixture of wild type and Arctic mutant peptides. These and other data are interpreted and discussed in terms of the role of protofibrils in fibril assembly and in disease.  相似文献   

2.
The pathology of Huntington's disease is characterized by neuronal degeneration and inclusions containing N-terminal fragments of mutant huntingtin (htt). To study htt aggregation, we examined purified htt fragments in vitro, finding globular and protofibrillar intermediates participating in the genesis of mature fibrils. These intermediates were high in beta-structure. Furthermore, Congo Red, a dye that stains amyloid fibrils, prevented the assembly of mutant htt into mature fibrils, but not the formation of protofibrils. Other proteins capable of forming ordered aggregates, such as amyloid beta and alpha-synuclein, form similar intermediates, suggesting that the mechanisms of mutant htt aggregation and possibly htt toxicity may overlap with other neurodegenerative disorders.  相似文献   

3.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

4.
The mechanisms linking deposits of insoluble amyloid fibrils to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings implicate transiently formed intermediates of mature amyloid fibrils as the principal toxic agent. Hence, determining which intermediate aggregates represent on-pathway precursors or off-pathway side branches is critical for understanding amyloid self-assembly, and for devising therapeutic approaches targeting relevant toxic species. We examined amyloid fibril self-assembly in acidic solutions, using the model protein hen egg-white lysozyme. Combining in situ dynamic light scattering with calibrated atomic-force microscopy, we monitored the nucleation and growth kinetics of multiple transient aggregate species, and characterized both their morphologies and physical dimensions. Upon incubation at elevated temperatures, uniformly sized oligomers formed at a constant rate. After a lag period of several hours, protofibrils spontaneously nucleated. The nucleation kinetics of protofibrils and the tight match of their widths and heights with those of oligomers imply that protofibrils both nucleated and grew via oligomer fusion. After reaching several hundred nanometers in length, protofibrils assembled into mature fibrils. Overall, the amyloid fibril assembly of lysozyme followed a strict hierarchical aggregation pathway, with amyloid monomers, oligomers, and protofibrils forming on-pathway intermediates for assembly into successively more complex structures.  相似文献   

5.
Several lines of evidence indicate that prefibrillar assemblies of amyloid-β (Aβ) polypeptides, such as soluble oligomers or protofibrils, rather than mature, end-stage amyloid fibrils cause neuronal dysfunction and memory impairment in Alzheimer's disease. These findings suggest that reducing the prevalence of transient intermediates by small molecule-mediated stimulation of amyloid polymerization might decrease toxicity. Here we demonstrate the acceleration of Aβ fibrillogenesis through the action of the orcein-related small molecule O4, which directly binds to hydrophobic amino acid residues in Aβ peptides and stabilizes the self-assembly of seeding-competent, β-sheet-rich protofibrils and fibrils. Notably, the O4-mediated acceleration of amyloid fibril formation efficiently decreases the concentration of small, toxic Aβ oligomers in complex, heterogeneous aggregation reactions. In addition, O4 treatment suppresses inhibition of long-term potentiation by Aβ oligomers in hippocampal brain slices. These results support the hypothesis that small, diffusible prefibrillar amyloid species rather than mature fibrillar aggregates are toxic for mammalian cells.  相似文献   

6.
Sasahara K  Yagi H  Naiki H  Goto Y 《Biochemistry》2007,46(11):3286-3293
Heat-triggered conversion of the salt-induced thin and flexible protofibrils into well-organized thick and straight mature amyloid fibrils was achieved with beta2-microglobulin, a protein responsible for dialysis-related amyloidosis. First, protofibrils that formed spontaneously at pH 2.5 in the presence of 0.5 M NaCl were aggregated by agitating the solution. Second, the aggregated protofibrils were heated in a cell of a differential scanning calorimeter (DSC). The DSC thermogram showed an exothermic transition with sigmoidal temperature dependence, resulting in a remarkably large decrease in the heat capacity of the solution. Third, on the basis of electron microscopy together with circular dichroism spectroscopy, seeding experiments, and a thioflavin T binding assay, the sigmoidal transition was found to represent the conversion of protofibrils into mature amyloid fibrils. Furthermore, DSC thermograms obtained at various heating rates revealed that the transition curve depends on the heating rate, implying that the effects of heat associated with the conversion to the mature fibrils are kinetically controlled, precluding an interpretation in terms of equilibrium thermodynamics. Taken together, these results highlight the importance of the change in heat capacity in addressing the biological significance of interactions between solvent water and amyloid fibrils and, moreover, in detecting the formation of amyloid fibrils.  相似文献   

7.
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

8.
The amyloid beta peptide (A beta) is crucial for the pathogenesis of Alzheimer's disease. Aggregation of monomeric A beta into insoluble amyloid fibrils proceeds through several soluble A beta intermediates, including protofibrils, which are believed to be central in the disease process. The main reason for this is their implication in familial Alzheimer's disease with the Arctic amyloid precursor protein mutation (E693G). This mutation gives rise to early onset Alzheimer's disease, and synthetic A beta 1-40Arctic displays an enhanced rate of protofibril formation in vitro[Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J & Lannfelt L. (2001) Nat Neurosci4, 887-893]. To increase our understanding of the mechanisms involved in A beta aggregation, especially A beta monomer oligomerization into protofibrils and protofibril fibrillization into fibrils, the kinetics of A beta 1-42wt and A beta 1-42Arctic aggregation were examined under different physiochemical conditions, such as concentration, temperature, ionic strength and pH. We used size exclusion chromatography for this purpose, where monomers are separated from protofibrils, and fibrils are separated from protofibrils in a centrifugation step. The Arctic mutation significantly accelerated both A beta 1-42wt protofibril formation and protofibril fibrillization. In addition, we demonstrated that two distinct chemical processes - monomer oligomerization and protofibril fibrillization - were affected differently by changes in the micro-environment and that the Arctic mutation alters the peptide response to such changes.  相似文献   

9.
Despite possessing a common cross-beta core, amyloid fibrils are known to exhibit great variations in their morphologies. To date, the mechanism responsible for the polymorphism in amyloid fibrils is poorly understood. Here we report that two variants of mammalian full-length prion protein (PrP), hamster (Ha) and mouse (Mo) PrPs, produced morphologically distinguishable subsets of mature fibrils under identical solvent conditions. To gain insight into the origin of this morphological diversity we analyzed the early stages of polymerization. Unexpectedly, we found that despite a highly conserved amyloidogenic region (94% identity within the residues 90-230), Ha and Mo PrPs followed two distinct pathways for lateral assembly of protofibrils into mature, higher order fibrils. The protofibrils of Ha PrP first formed irregular bundles characterized by a peculiar palm-type shape, which ultimately condensed into mature fibrils. The protofibrils of Mo PrP, on the other hand, associated in pairs in a pattern resembling dichotomous coalescence. These pathways are referred to here as the palm-type and dichotomous mechanisms. Two distinct mechanisms for lateral assembly explain striking differences in morphology of mature fibrils produced from closely related Mo and Ha PrPs. Remarkable similarities between subtypes of amyloid fibrils generated from different proteins and peptides suggest that the two mechanisms of lateral assembly may not be limited to prion proteins but may be a common characteristic of polymerization of amyloidogenic proteins and peptides in general.  相似文献   

10.
Transthyretin (TTR) is an important human transport protein present in the serum and the cerebrospinal fluid. Aggregation of TTR in the form of amyloid fibrils is associated with neurodegeneration, but the mechanisms of cytotoxicity are likely to stem from the presence of intermediate assembly states. Characterization of these intermediate species is therefore essential to understand the etiology and pathogenesis of TTR-related amyloidoses. In the present work we used atomic force microscopy to investigate the morphological features of wild-type (WT) TTR amyloid protofibrils that appear in the early stages of aggregation. TTR protofibrils obtained by mild acidification appeared as flexible filaments with variable length and were able to bind amyloid markers (thioflavin T and Congo red). Surface topology and contour-length distribution displayed a periodic pattern of ~ 15 nm, suggesting that the protofibrils assemble via an end-binding oligomer fusion mechanism. The average height and periodic substructure found in protofibrils is compatible with the double-helical model of the TTR amyloid protofilament. Over time protofibrils aggregated into bundles and did not form mature amyloid-like fibrils. Unlike amyloid fibrils that are typically stable under physiological conditions, the bundles dissociated into component protofibrils with axially compacted and radially dilated structure when exposed to phosphate-buffered saline solution. Thus, WT TTR can form metastable filamentous aggregates that may represent an important transient state along the pathway towards the formation of cytotoxic TTR species.  相似文献   

11.
The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to “catalyze” the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms by which Hsp104 modulates aggregation and fibrillogenesis, the effect of Hsp104 on the fibrillogenesis of amyloid beta (Aβ) was investigated by characterizing its ability to interfere with oligomerization and fibrillogenesis of different species along the amyloid-formation pathway of Aβ. To probe the disaggregation activity of Hsp104, its ability to dissociate preformed protofibrillar and fibrillar aggregates of Aβ was assessed in the presence and in the absence of ATP. Our results show that Hsp104 inhibits the fibrillization of monomeric and protofibrillar forms of Aβ in a concentration-dependent but ATP-independent manner. Inhibition of Aβ fibrillization by Hsp104 is observable up to Hsp104/Aβ stoichiometric ratios of 1:1000, suggesting a preferential interaction of Hsp104 with aggregation intermediates (e.g., oligomers, protofibrils, small fibrils) on the pathway of Aβ amyloid formation. This hypothesis is consistent with our observations that Hsp104 (i) interacts with Aβ protofibrils, (ii) inhibits conversion of protofibrils into amyloid fibrils, (iii) arrests fibril elongation and reassembly, and (iv) abolishes the capacity of protofibrils and sonicated fibrils to seed the fibrillization of monomeric Aβ. Together, these findings suggest that the strong inhibition of Aβ fibrillization by Hsp104 is mediated by its ability to act at different stages and target multiple intermediates on the pathway to amyloid formation.  相似文献   

12.
Alzheimer disease is characterized by the accumulation of aggregated amyloid beta-peptide (Abeta) in the brain. The physiological mechanisms and factors that predispose to Abeta aggregation and deposition are not well understood. In this report, we show that calcium can predispose to Abeta aggregation and fibril formation. Calcium increased the aggregation of early forming protofibrillar structures and markedly increased conversion of protofibrils to mature amyloid fibrils. This occurred at levels 20-fold below the calcium concentration in the extracellular space of the brain, the site at which amyloid plaque deposition occurs. In the absence of calcium, protofibrils can remain stable in vitro for several days. Using this approach, we directly compared the neurotoxicity of protofibrils and mature amyloid fibrils and demonstrate that both species are inherently toxic to neurons in culture. Thus, calcium may be an important predisposing factor for Abeta aggregation and toxicity. The high extracellular concentration of calcium in the brain, together with impaired intraneuronal calcium regulation in the aging brain and Alzheimer disease, may play an important role in the onset of amyloid-related pathology.  相似文献   

13.
Human amylin (hA), a 37-amino-acid polypeptide, is one of a number of peptides with the ability to form amyloid fibrils and cause disease. It is the main constituent of the pancreatic amyloid deposits associated with type 2 diabetes. Increasing interest in early assembly intermediates rather than the mature fibrils as the cytotoxic agent has led to this study in which the smallest hA oligomers have been captured by atomic force microscopy. These are 2.3 +/- 1.9 nm in height, 23 +/- 14 nm in length, and consist of an estimated 16 hA molecules. Oligomers first grow to a height of about 6 nm before they begin to significantly elongate into fibrils. Congo red inhibits elongation but not the growth in height of hA oligomers. Two distinct phases have thus been identified in hA fibrillogenesis: lateral growth of oligomers followed by longitudinal growth into mature fibrils. These observations suggest that mature fibrils are assembled directly via longitudinal growth of full-width oligomers, making assembly by lateral association of protofibrils appear less likely.  相似文献   

14.
Amyloid fibrils are supramolecular assemblies, the deposition of which is associated with many serious diseases including Alzheimer, prion, and Huntington diseases. Several smaller aggregates such as oligomers and protofibrils have been proposed to play a role in early stages of the fibrillation process; however, little is known about how these species contribute to the formation of mature amyloid fibrils with a rigid cross-β structure. Here, we identified a new pathway for the formation of insulin amyloid fibrils at a high concentration of salt in which mature fibrils were formed in a stepwise manner via a prefibrillar intermediate: minute prefibrillar species initially accumulated, followed by the subsequent formation of thicker amyloid fibrils. Fourier transform infrared spectra suggested the sequential formation of two types of β-sheets with different strength hydrogen bonds, one of which was developed concomitantly with the mutual assembly of the prefibrillar intermediate to form mature fibrils. Interestingly, fibril propagation and cellular toxicity appeared only after the later step of structural organization, and a comparison of β-sheet regions between the prefibrillar intermediate and mature fibrils using proteolysis led to the proposal of specific regions essential for manifestation of these properties.  相似文献   

15.
Amyloid oligomers, protofibrils, and fibrils of various amyloidogenic proteins are known to induce cell death. Tetracycline prevents the formation of fibrils of Aβ peptide and other amyloidogenic proteins and decomposes mature fibrils. It was previously shown that sarcomeric cytoskeletal proteins of the titin family (protein X, protein C, and protein H) in vitro form amyloid fibrils and tetracycline decomposes them. In this work, the concentration and time dependence of the survival of polymorphonuclear leukocytes in the presence of protein X amyloid fibrils is demonstrated. It is also shown that the survival rate increases as fibrils are decomposed by tetracycline. The antibiotic itself is found to be nontoxic. The results obtained show that this approach can be used to evaluate the efficiency of drugs that prevent or rectify amyloidoses.  相似文献   

16.
Based on atomic force microscopy analysis of the morphology of fibrillar species formed during fibrillation of alpha-synuclein, insulin, and the B1 domain of protein G, a previously described model for the assembly of amyloid fibrils of immunoglobulin light-chain variable domains is proposed as a general model for the assembly of protein fibrils. For all of the proteins studied, we observed two or three fibrillar species that vary in diameter. The smallest, protofilaments, have a uniform height, whereas the larger species, protofibrils and fibrils, have morphologies that are indicative of multiple protofilaments intertwining. In all cases, protofilaments intertwine to form protofibrils, and protofibrils intertwine to form fibrils. We propose that the hierarchical assembly model describes a general mechanism of assembly for all amyloid fibrils.  相似文献   

17.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

18.
The aggregation of proteins often results in highly ordered fibrillar structures. While significant insights have been obtained on structural aspects of amyloid fibrils, little is known about the structures of protofibrils, which are presumed to be the precursors of fibrils. An understanding of the molecular mechanism of the formation of protofibrils and fibrils requires information on the landscape of interpeptide interactions. This work addresses this question by using, as a model protein, barstar, which forms protofibrils and fibrils at low (< 3) pH. Use was made of the heterogeneity of aggregate populations encountered during fibril formation. Population heterogeneity was scored through rotational dynamics monitored by time-resolved fluorescence anisotropy of an environment-sensitive fluorophore, 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (1,5-IAEDANS), attached to specific locations in the protein. Firstly, it was observed that barstar, when labeled at certain locations with 1,5-IAEDANS, did not form mixed protofibrils with the corresponding unlabeled protein. Labeled and unlabeled proteins formed protofibrils as separate populations. A two-population model of fluorescence anisotropy decay kinetics exhibiting a ‘dip-and-rise’ behavior was the main readout in arriving at this conclusion. Additional support for this conclusion came from the fluorescence lifetime of the probe 1,5-IAEDANS. Subsequently, the location of the fluorophore was moved along the length of the protein in nine mutant proteins, and the capability to form mixed fibrils was assessed. The results revealed that about two-thirds of the protein sequence at the C-terminal end of the protein was intimately involved in the formation of ordered protofibrils, probably forming the core, while the remaining one-third of the protein (i.e., the N-terminal region) remained largely noninteractive and flexible. This methodology can be used as a general strategy to identify regions of a given protein sequence involved in interprotein interactions in amyloid protofibrils.  相似文献   

19.
Interest in amyloidogenesis has exploded in recent years, as scientists recognize the role of amyloid protein aggregates in degenerative diseases such as Alzheimer's and Parkinson's disease. Assembly of proteins or peptides into mature amyloid fibrils is a multistep process initiated by conformational changes, during which intermediate aggregation states such as oligomers, protofibrils, and filaments are sampled. Although once it was assumed that the mature fibril was the biologically toxic species, more recently it has been widely speculated that soluble intermediates are the most damaging. Because of its relevance to mechanism of disease, the paths traversed during fibrillogenesis, and the kinetics of the process, are of considerable interest. In this review we discuss various kinetic models used to describe amyloidogenesis. Although significant advances have been made, construction of rigorous, detailed, and experimentally validated quantitative models remains a work in progress. We briefly review recent literature that illustrates the interplay between kinetics and amyloid-membrane interactions: how do different intermediates interact with lipid bilayers, and how does the lipid bilayer affect kinetics of amyloidogenesis?  相似文献   

20.
Amyloid deposition accompanies over 20 degenerative diseases in human, including Alzheimer's, Parkinson's, and prion diseases. Recent studies revealed the importance of other type of protein aggregates, e.g., non-specific aggregates, protofibrils, and small oligomers in the development of such diseases and proved their increased toxicity for living cells in comparison with mature amyloid fibrils. We carried out a comparative structural analysis of different monomeric and aggregated states of β2-microglobulin, a protein responsible for hemodialysis-related amyloidosis. We investigated the structure of the native and acid-denatured states, as well as that of mature fibrils, immature fibrils, amorphous aggregates, and heat-induced filaments, prepared under various in vitro conditions. Infrared spectroscopy demonstrated that the β-sheet compositions of immature fibrils, heat-induced filaments and amorphous aggregates are characteristic of antiparallel intermolecular β-sheet structure while mature fibrils are different from all others suggesting a unique overall structure and assembly. Filamentous aggregates prepared by heat treatment are of importance in understanding the in vivo disease because of their stability under physiological conditions, where amyloid fibrils and protofibrils formed at acidic pH depolymerize. Atomic force microscopy of heat-induced filaments represented a morphology similar to that of the low pH immature fibrils. At a pH close to the pI of the protein, amorphous aggregates were formed readily with association of the molecules in native-like conformation, followed by formation of intermolecular β-sheet structure in a longer time-scale. Extent of the core buried from the solvent in the various states was investigated by H/D exchange of the amide protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号