首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circadian clock in the retina regulates a variety of physiological phenomena such as disc shedding and melatonin release. Although these events are critical for retinal functions, it is almost unknown how the circadian clock controls the physiological rhythmicity. To gain insight into the processes, we performed a proteomic analysis using 2-DE to find proteins whose levels show circadian changes. Among 415 retinal protein spots, 11 protein spots showed circadian rhythmicity in their intensities. We performed MALDI-TOF MS and NanoLC-MS/MS analyses and identified proteins contained in the 11 spots. The proteins were related to vesicular transport, calcium-binding, protein degradation, metabolism, RNA-binding, and protein foldings, suggesting the clock-regulation of neurotransmitter release, transportation of the membrane proteins, calcium-binding capability, and so on. We also found a rhythmic phosphorylation of N-ethylmaleimide-sensitive fusion protein and identified one of the amino acid residues modified by phosphorylation. These findings provide a new perspective on the relationship between the physiological functions of the retina and the circadian clock system.  相似文献   

2.
As part of ongoing efforts to better understand the role of protein oxidative modifications in retinal pathology, protein nitration in retina has been compared between rats exposed to damaging light or maintained in the dark. In the course of the research, Western methodology for detecting nitrotyrosine-containing proteins has been improved by incorporating chemical reduction of nitrotyrosine to aminotyrosine, allowing specific and nonspecific nitrotyrosine immunoreactivity to be distinguished. A liquid chromatography MS/MS detection strategy was used that selects all possible nitrotyrosine peptides for MS/MS based on knowing the protein identity. Quantitative liquid chromatography MS/MS analyses with tetranitromethane-modified albumin demonstrated the approach capable of identifying sites of tyrosine nitration with detection limits of 4-33 fmol. Using two-dimensional gel electrophoresis, Western detection, and mass spectrometric analyses, several different nitrotyrosine-immunoreactive proteins were identified in light-exposed rat retina compared with those maintained in the dark. Immunocytochemical analyses of retina revealed that rats reared in darkness exhibited more nitrotyrosine immunoreactivity in the photoreceptor outer segments. After intense light exposure, immunoreactivity decreased in the outer segments and increased in the photoreceptor inner segments and retinal pigment epithelium. These results suggest that light modulates retinal protein nitration in vivo and that nitration may participate in the biochemical sequela leading to light-induced photoreceptor cell death. Furthermore, the identification of nitrotyrosine-containing proteins from rats maintained in the dark, under non-pathological conditions, provides the first evidence of a possible role for protein nitration in normal retinal physiology.  相似文献   

3.

Background  

The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs).  相似文献   

4.
5.
The oxygen requirements of different retinal layers are of interest in understanding the vulnerability of the retina to hypoxic damage in retinal diseases with an ischemic component. Here, we report the first measurements of retinal oxygen consumption in the visual streak of the rabbit retina, the region with the highest density of retinal neurons, and compare it with that in the less-specialized region of the retina underlying the vascularized portion of the rabbit retina. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth in anesthetized animals. Measurements were performed in the region of the retina containing overlying retinal vessels and in the center of the visual streak. Established mathematical analyses of the intraretinal oxygen distribution were used to quantify the rate of oxygen consumption in the inner and outer retina and the relative oxygen contributions from the choroidal and vitreal sides. Outer retinal oxygen consumption was higher in the visual streak than in the vascularized area (means +/- SE, 284 +/- 20 vs. 210 +/- 23 nl O2.min(-1) x cm(-2), P = 0.026, n = 10). However, inner retinal oxygen consumption in the visual streak was significantly lower than in the vascular area (57 +/- 4.3 vs. 146 +/- 12 nl O2 x min(-1) x cm(-2), P < 0.001). We conclude that despite the higher processing requirements of the inner retina in the visual streak, it has a significantly lower oxygen consumption rate than the inner retina underlying the retinal vasculature. This suggests that the oxygen uptake of the inner retina is regulated to a large degree by the available oxygen supply rather than the processing requirements of the inner retina alone.  相似文献   

6.
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.  相似文献   

7.
The UPR is activated in the mouse retina expressing misfolded T17M rhodopsin (RHO) during autosomal dominant retinitis pigmentosa (ADRP) progression. Therefore, the goal of this study is to validate the UPR-induced caspase-7 as a new therapeutic target that modulates the UPR, reduces the level of apoptosis and protects the ADRP retina from retinal degeneration and light-induced damage. Mice were analyzed using ERG, SD-OCT and histology to determine the role of caspase-7 ablation. The results of these experiments demonstrate the significant preservation of photoreceptors and their function in T17M RHO CASP-7 retinas from P30 to P90 compared with control mice. These mice were also protected from the light-induced decline in the ERG responses and apoptosis. The RNA and protein analyses of T17M RHO+Csp7-siRNA, Tn+Csp7-siRNA 661W cells and T17M RHO CASP-7 retinas revealed that caspase-7 ablation reprograms the UPR and reduces JNK-induced apoptosis. This reduction is believed to occur through the downregulation of the mTOR and Hif1a proteins. In addition, decline in activated PARP1 was detected in T17M RHO CASP-7 retina. Altogether, our findings indicate that the targeting of caspase-7 in T17M RHO mice could be a feasible therapeutic strategy for advanced stages of ADRP.  相似文献   

8.
In the vertebrate retina, the formation of neural circuits within discrete laminae is critical for the establishment of retinal visual function. Precise formation of retinal circuits requires the coordinated actions of adhesive and repulsive molecules, including repulsive transmembrane semaphorins (Sema6A, Sema5A, and Sema5B). These semaphorins signal through different Plexin A (PlexA) receptors, thereby regulating distinct aspects of retinal circuit assembly. Here, we investigate the physiological roles of three Class 6 transmembrane semaphorins (Sema6B, Sema6C, and Sema6D), previously identified as PlexA receptor ligands in non-retinal tissues, in mammalian retinal development. We performed expression analysis and also phenotypic analyses of mice that carry null mutations in each of genes encoding these proteins using a broad range of inner and outer retinal markers. We find that these Class 6 semaphorins are uniquely expressed throughout postnatal retinal development in specific domains and cell types of the developing retina. However, we do not observe defects in stereotypical lamina-specific neurite stratification of retinal neuron subtypes in Sema6B−/− or Sema6C−/−; Sema6D−/− retinas. These findings indicate these Class 6 transmembrane semaphorins are unlikely to serve as major PlexA receptor ligands for the assembly of murine retinal circuit laminar organization.  相似文献   

9.
10.
Due to their high energy demands and characteristic morphology, retinal photoreceptor cells require a specialized lipid metabolism for survival and function. Accordingly, dysregulation of lipid metabolism leads to the photoreceptor cell death and retinal degeneration. Mice bearing a frameshift mutation in the gene encoding lysophosphatidylcholine acyltransferase 1 (Lpcat1), which produces saturated phosphatidylcholine (PC) composed of two saturated fatty acids, has been reported to cause spontaneous retinal degeneration in mice; however, the mechanism by which this mutation affects degeneration is unclear. In this study, we performed a detailed characterization of LPCAT1 in the retina and found that genetic deletion of Lpcat1 induces light-independent and photoreceptor-specific apoptosis in mice. Lipidomic analyses of the retina and isolated photoreceptor outer segment (OS) suggested that loss of Lpcat1 not only decreased saturated PC production but also affected membrane lipid composition, presumably by altering saturated fatty acyl-CoA availability. Furthermore, we demonstrated that Lpcat1 deletion led to increased mitochondrial reactive oxygen species levels in photoreceptor cells, but not in other retinal cells, and did not affect the OS structure or trafficking of OS-localized proteins. These results suggest that the LPCAT1-dependent production of saturated PC plays critical roles in photoreceptor maturation. Our findings highlight the therapeutic potential of saturated fatty acid metabolism in photoreceptor cell degeneration–related retinal diseases.  相似文献   

11.
Membrane proteins are expressed in a specific manner in developing tissues, and characterization of these proteins is valuable because it allows them to be used as cell surface markers. Furthermore, they are potentially important for the regulation of organogenesis because some may participate in signal transduction. In the present study, we used proteomics to examine the comprehensive protein expression profile of the membrane fraction in the embryonic and adult mouse retina. We purified the retinal membrane fraction by sucrose-density-gradient centrifugation and analysed total proteins using shotgun analysis on a nanoflow LC-MS/MS (liquid chromatography tandem MS) system. Approximately half of the 326 proteins from the adult retina and a quarter of the 310 proteins from the embryonic retina (day 17) appeared to be membrane-associated proteins. Among these, MLP [MARCKS (myristoylated alanine-rich C-kinase substrate)-like protein], which shares approx. 50% amino acid identity with MARCKS, was selected for further characterization. The mRNA and surface protein expression of MLP decreased as retinal development progressed. Overexpression of MLP by retrovirus-mediated gene transfer enhanced the proliferation of retinal progenitor cells without affecting differentiation or cell migration in a retinal explant culture system. In contrast, MLP overexpression did not promote proliferation in fibroblasts (NIH 3T3 cells). Mutation analysis of MLP demonstrated that myristoylation was necessary to promote proliferation and that phosphorylation inhibited proliferation, indicating the functional importance of membrane localization.  相似文献   

12.
《Genomics》2023,115(4):110644
Single-cell RNA sequencing (scRNA-seq) analysis have provided an unprecedented resolution for the studies on diabetic retinopathy (DR). However, the early changes in the retina in diabetes remain unclear. A total of 8 human and mouse scRNA-seq datasets, containing 276,402 cells were analyzed individually to comprehensively delineate the retinal cell atlas. The neural retinas were isolated from the type 2 diabetes (T2D) and control mice, and scRNA-seq analysis was conducted to evaluate the early effects of diabetes on the retina. Bipolar cell (BC) heterogeneity were identified. We found some stable BCs across multiple datasets, and explored their biological functions. A new RBC subtype (Car8_RBC) in the mouse retina was validated using the multi-color immunohistochemistry. AC149090.1 was significantly upregulated in the rod cells, ON cone BCs (CBCs), OFF CBCs, and RBCs in T2D mice. Additionally, the interneurons, especially BCs, were the most vulnerable cells to diabetes by integrating scRNA-seq and genome-wide association studies (GWAS) analyses. In conclusion, this study delineated a cross-species retinal cell atlas and uncovered the early pathological alterations in the retina of T2D mice.  相似文献   

13.
14.
The number of proliferating cells in the rodent retina declines dramatically after birth. To determine if extrinsic factors in the retinal micro-environment are responsible for this decline in proliferation, we established cultures of retinal progenitors or Muller glia, and added dissociated retinal neurons from older retinas. The older cells inhibited proliferation of progenitor cells and Muller glia. When these experiments were performed in the presence of TGF(beta)RII-Fc fusion protein, an inhibitor of TGF(beta) signaling, proliferation was restored. This suggests a retina-derived TGF(beta) signal is responsible for the developmental decline in retinal proliferation. TGFbeta receptors I and II are expressed in the retina and are located in nestin-positive progenitors early in development and glast-positive Muller glia later in development. RT-PCR and immunofluorescence data show TGF(beta)2 is the most highly expressed TGF(beta)ligand in the postnatal retina, and it is expressed by inner retinal neurons. Addition of either TGF(beta)1 or TGF(beta)2 to postnatal day 4 retinas significantly inhibited progenitor proliferation, while treatment of explanted postnatal day 6 retinas with TGF(beta) signaling inhibitors resulted in increased proliferation. Last, we tested the effects of TGF(beta) in vivo by injections of TGF(beta) signaling inhibitors: when TGF(beta) signaling is inhibited at postnatal day 5.5, proliferation is increased in the central retina; and when co-injected with EGF at postnatal day 10, TGF(beta)inhibitors stimulate Muller glial proliferation. In sum, these results show that retinal neurons produce a cytostatic TGF(beta) signal that maintains mitotic quiescence in the postnatal rat retina.  相似文献   

15.
Activating protein 2alpha (AP-2alpha) is known to be expressed in the retina, and AP-2alpha-null mice exhibit defects in the developing optic cup, including patterning of the neural retina (NR) and a replacement of the dorsal retinal pigmented epithelium (RPE) with NR. In this study, we analyzed the temporal and spatial retinal expression patterns of AP-2alpha and created a conditional deletion of AP-2alpha in the developing retina. AP-2alpha exhibited a distinct expression pattern in the developing inner nuclear layer of the retina, and colocalization studies indicated that AP-2alpha was exclusively expressed in postmitotic amacrine cell populations. Targeted deletion of AP-2alpha in the developing retina did not result in observable retinal defects. Further examination of AP-2alpha-null mutants revealed that the severity of the RPE defect was variable and, although defects in retinal lamination occur at later embryonic stages, earlier stages showed normal lamination and expression of markers for amacrine and ganglion cells. Together, these data demonstrate that, whereas AP-2alpha alone does not play an intrinsic role in retinogenesis, it has non-cell-autonomous effects on optic cup development. Additional expression analyses showed that multiple AP-2 proteins are present in the developing retina, which will be important to future studies.  相似文献   

16.
Although several observations show local T cell recognition of retinal Ag, there has been no direct demonstration that the APC were retinal derived, rather than recruited. In this study, CD45(+) cells isolated from immunologically quiescent murine retina were tested in vitro for functional evidence of Ag presentation to naive and Ag-experienced CD4 T cells specific for beta-galactosidase. Because CD45(+) cells from brain have been reported to be efficient APC, they were included for comparison. Measures of activation included changes in CD4, CD25, CD44, CD45RB, CD62L, CD69, caspase-3 activation, CFSE dilution, size, number of cells recovered, and cytokine production. Retinal CD45(+) cells gave no evidence of Ag-dependent TCR ligation in naive T cells, unlike splenic APC and CD45(+) cells from brain, which supported potent responses. Instead, addition of retinal CD45(+) cells to cocultures of naive 3E9 T cells plus splenic APC reduced the yield of activated T cells and cytokine production by limiting T cell activation at early time points. Ag-experienced T cells responded weakly to Ag presented by retinal CD45(+) cells. Activating the retinal cells with IFN-gamma, anti-CD40, or LPS incrementally increased their APC activity. Addition of neutralizing Abs to TGF-beta did not reveal suppressed retinal APC activity. Because retina lacks tissue equivalents of meninges and choroid plexus, rich sources of dendritic cells in brain, cells from retina may better represent the APC activity of fresh, adult CNS parenchymal and perivascular cells. The activity of the retinal CD45(+) cells appears to be directed to limiting T cell responses.  相似文献   

17.
Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3 ± 0.1 vs 20.8 ± 1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using a multiplexed quantitative proteomics approach (TMT-MS3). Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while the expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (P ≤ .05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton, and actin filament organisation, along with increased expression of proteins in coagulation cascade, apoptosis, oxidative stress, and RNA processing. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport, and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism, and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins were exclusive to human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP.  相似文献   

18.
Retinopathy of animals is induced by many DNA-damaging agents. This fact shows that DNA lesions may initiate retinal degeneration. The aim of our work was to study the effects of gamma and proton irradiation and single administration of methylnitrosourea (MNU) on mice retina. We assessed morphological changes, DNA damage and repair, as well as expression of proteins (p53, ATM, PARP, FasR, and caspase 3) participating in apoptosis in retina. 14 Gy was the equitoxic dose for induction of DNA single-strand breaks by both gamma- and proton irradiation. However, protons were twice as effective as γ rays in induction of DNA double-strand breaks. All breaks have been repaired for ≤10 h. Irradiation resulted in increased expression of p53 and ATM. Seven days after irradiation, no signs of cell death and retinal degeneration were observed. Proton irradiation with 25 Gy resulted in destructive changes in retina localized mainly in the photoreceptor layer. These changes were accompanied by enhanced expression of proapoptotic proteins. A single systemic administration of MNU (70 mg/kg) increased intracellular levels of p53, PARP, FasR, and Caspase 3 followed by destructive changes in retina with sings of apoptosis in photoreceptors. Similarly to irradiation, a halved MNU dose did not exhibit a cytotoxic effect on retina. A high level of spontaneous DNA damage at apurine and apyrimidine sites were observed in mouse retina. The results show that there is a genotoxic threshold in initiation of retinal cell death in vivo. It is suggested that topoisomerase 2 translates primary DNA damage into a cytotoxic effect in retina.  相似文献   

19.
Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy.  相似文献   

20.
Equine recurrent uveitis is a severe and frequent blinding disease in horses which presents with auto-reactive invading T-cells, resulting in the destruction of the inner eye. Infiltration of inflammatory cells into the retina and vitreous is driven by currently unknown guidance cues, however surgical removal of the vitreous (vitrectomy) has proven therapeutically successful. Therefore, proteomic analyses of vitrectomy samples are likely to result in detection of proteins contributing to disease pathogenesis. Vitreous from healthy and ERU diseased horses were directly compared by quantitative mass spectrometry based on label-free quantification of peak intensities across samples. We found a significant upregulation of complement and coagulation cascades and downregulation of negative paracrine regulators of canonical Wnt signalling including the Wnt signalling inhibitors DKK3 and SFRP2. Based on immunohistochemistry, both proteins are expressed in equine retina and suggest localisation to retinal Müller glial cells (RMG), which may be the source cells for these proteins. Furthermore, retinal expression levels and patterns of DKK3 change in response to ERU. Since many other regulated proteins identified here are associated with RMG cells, these cells qualify as the prime responders to autoimmune triggers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号