首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pneumococcal epsilon zeta antitoxin toxin (PezAT) system is a chromosomally encoded, class II toxin antitoxin system from the human pathogen Streptococcus pneumnoniae. Neutralization of the bacteriotoxic protein PezT is carried out by complex formation with its cognate antitoxin PezA. Here we study the stability of the inhibitory complex in vivo and in vitro. We found that toxin release is impeded in Escherichia coli and Bacillus subtilis due to the proteolytic resistance of PezA once bound to PezT. These findings are supported by in vitro experiments demonstrating a strong thermodynamic stabilization of both proteins upon binding. A detailed kinetic analysis of PezAT assembly revealed that these particular features of PezAT are based on a strong, electrostatically guided binding mechanism leading to a stable toxin antitoxin complex with femtomolar affinity. Our data show that PezAT complex formation is distinct to all other conventional toxin antitoxin modules and a controlled mode of toxin release is required for activation.  相似文献   

2.
3.
pSM19035 of the pathogenic bacterium Streptococcus pyogenes is a low-copy-number plasmid carrying erythromycin resistance, stably maintained in a broad range of gram-positive bacteria. We show here that the omega-epsilon-zeta operon of this plasmid constitutes a novel proteic plasmid addiction system in which the epsilon and zeta genes encode an antitoxin and toxin, respectively, while omega plays an autoregulatory function. Expression of toxin Zeta is bactericidal for the gram-positive Bacillus subtilis and bacteriostatic for the gram-negative Escherichia coli. The toxic effects of zeta gene expression in both bacterial species are counteracted by proper expression of epsilon. The epsilon-zeta toxin-antitoxin cassette stabilizes plasmids in E. coli less efficiently than in B. subtilis.  相似文献   

4.
Most genomes of bacteria contain toxin-antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA family are found throughout the genomes of pathogenic bacteria and were shown not only to stabilize resistance plasmids but also to promote virulence. The broad distribution of epsilon/zeta systems implies that zeta toxins utilize a ubiquitous bacteriotoxic mechanism. However, whereas all other TA families known to date poison macromolecules involved in translation or replication, the target of zeta toxins remained inscrutable. We used in vivo techniques such as microscropy and permeability assays to show that pneumococcal zeta toxin PezT impairs cell wall synthesis and triggers autolysis in Escherichia coli. Subsequently, we demonstrated in vitro that zeta toxins in general phosphorylate the ubiquitous peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) and that this activity is counteracted by binding of antitoxin. After identification of the product we verified the kinase activity in vivo by analyzing metabolite extracts of cells poisoned by PezT using high pressure liquid chromatograpy (HPLC). We further show that phosphorylated UNAG inhibitis MurA, the enzyme catalyzing the initial step in bacterial peptidoglycan biosynthesis. Additionally, we provide what is to our knowledge the first crystal structure of a zeta toxin bound to its substrate. We show that zeta toxins are novel kinases that poison bacteria through global inhibition of peptidoglycan synthesis. This provides a fundamental understanding of how epsilon/zeta TA systems stabilize mobile genetic elements. Additionally, our results imply a mechanism that connects activity of zeta toxin PezT to virulence of pneumococcal infections. Finally, we discuss how phosphorylated UNAG likely poisons additional pathways of bacterial cell wall synthesis, making it an attractive lead compound for development of new antibiotics.  相似文献   

5.
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.  相似文献   

6.
7.
Toxin–antitoxin (TA) systems are widespread genetic modules in the genomes of bacteria and archaea emerging as key players that modulate bacterial physiology. They consist of two parts, a toxic component that blocks an essential cellular process and an antitoxin that inhibits this toxic activity during normal growth. According to the nature of the antitoxin and the mode of inhibition, TA systems are subdivided into different types. Here, we describe the characterization of a type II‐like TA system in Escherichia coli called EzeT. While in conventional type II systems the antitoxin is expressed in trans to form an inactive protein–protein complex, EzeT consists of two domains combining toxin and cis‐acting antitoxin functionalities in a single polypeptide chain. We show that the C‐terminal domain of EzeT is homologous to zeta toxins and is toxic in vivo. The lytic phenotype could be attributed to UDP‐N‐acetylglucosamine phosphorylation, so far only described for type II epsilon/zeta systems from Gram‐positive streptococci. Presence of the N‐terminal domain inhibits toxicity in vivo and strongly attenuates kinase activity. Autoinhibition by a cis‐acting antitoxin as described here for EzeT‐type TA systems can explain the occurrence of single or unusually large toxins, further expanding our understanding of the TA system network.  相似文献   

8.
We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 A crystal structure of Kid reveals a 2-fold symmetric dimer that closely resembles the DNA gyrase-inhibitory toxin protein CcdB from E. coli F plasmid despite the lack of any notable sequence similarity. Analysis of nontoxic mutants of Kid suggests a target interaction interface associated with toxicity that is in marked contrast to that proposed for CcdB. A possible region for interaction of Kid with the antitoxin is proposed that overlaps with the target binding site and may explain the mode of antitoxin action.  相似文献   

9.
The parDE operon, located within the 3.2-kb stabilization region of plasmid RK2, encodes antitoxin (ParD) and toxin (ParE) proteins that stabilize the maintenance of this broad-host-range plasmid via a postsegregational killing mechanism. A ParE protein derivative, designated ParE', was purified by construction of a fusion protein, GST-ParE, followed by glutathione-agarose binding and cleavage of the fusion protein. ParE' has three additional amino acids on the N terminus and a methionine residue in place of the native leucine residue. The results of glutathione-agarose affinity binding and glutaraldehyde cross-linking indicate that ParE' exists as a dimer in solution and that it binds to the dimeric form of ParD to form a tetrameric complex. The formation of this complex is presumably responsible for the ability of ParD to neutralize ParE toxin activity. Previous studies demonstrated that the parDE operon is autoregulated as a result of the binding of the ParD protein to the parDE promoter. ParE' also binds to the parDE promoter but only in the presence of the autoregulatory ParD protein. ParE', in the presence or absence of the ParD protein, does not bind to any other part of the 3.2-kb stabilization region. The binding of the ParE' protein to ParD did not alter the DNase I footprint pattern obtained as a result of ParD binding to the parDE promoter. The role of ParE in binding along with ParD to the promoter, if any, remains unclear.  相似文献   

10.
绿脓杆菌(Pseudomonas aeruginosa)利用六型分泌系统(T6SS)向其他竞争性细菌分泌毒素效应分子Tse2,这是一种新发现的绿脓杆菌获得生存优势的分子机制.为了避免同类间的误杀,绿脓杆菌合成一种特异结合Tse2的抑制蛋白Tsi2来保护自己.序列分析显示,Tsi2是绿脓杆菌特有的一种新型类抗毒素蛋白.我们利用SAD方法成功地解析了Tsi2 1.8Å分辨率的晶体结构.Tsi2的三维结构采用一种规则的卷曲螺旋的结构特征,这是抗毒素分子中的一种全新的折叠方式,不同于经典的抗毒素分子在没有结合毒素分子状态下采用无规则构象的结构特征;二聚体是Tsi2的功能单位,二聚体内两个Tsi2单体通过广阔的疏水相互作用紧密结合,形成“夹子”状独特的二聚体组装方式;位于二聚体界面上的两个凹槽分别结合对称分子的两段螺旋,提供了Tsi2与Tse2结合可能的分子部位.该研究工作结果对于认识Tsi2抗毒素蛋白的分子本质,揭示其发挥抗毒素活性的结构基础,并为进一步开展Tse2-Tsi2复合物的结构与功能研究奠定了坚实的基础.  相似文献   

11.
ParD is a small, acidic protein from the partitioning system of the plasmid RK2/RP4. The ParD protein exhibits specific DNA binding activity and, as the antidote component of a toxin-antidote plasmid addiction system, ParD forms a tight complex in solution with its toxin antagonist, the ParE protein. Unopposed ParE acts as a toxin that causes growth retardation and killing of plasmid cured cells. ParD negatively autoregulates its expression by binding to an operator sequence in the parDE promoter region. This DNA binding activity is crucial for the regulation of the relative abundance of toxin and antidote which ultimately determines life or death for the bacterial host and its daughter cells. In light scattering studies and gel filtration chromatography we observed the existence of a stable dimer of ParD in solution. The stoichiometry of ParD-DNA complex formation appeared to be 4:1, the molecular mass of the complex was 72.1 kDa. The alpha-helical content of ParD as determined by CD-spectrometry was 35%. The protein exhibited high thermostability with a T(M) of 64 degrees C and deltaH of 25 kcal/mol as shown by differential scanning calorimetry. Upon complex formation the T(M) increased by 10 degrees C. The thermal unfolding of the ParD protein was highly reversible as observed in repeated DSC scans of the same sample. The recovery of the native fold was proven by CD-spectroscopy.  相似文献   

12.
13.
The chromosomal YoeB-YefM toxin-antitoxin module common to numerous strains of bacteria is presumed to have a significant role in survival under stringent conditions. Recently we showed that the purified YefM antitoxin is a natively unfolded protein, as we previously reported for the Phd antitoxin in the P1 phage Doc-Phd toxin-antitoxin system. Here we report the purification and structural properties of the YoeB toxin and present physical evidence for the existence of a tight YoeB.YefM polypeptide complex in solution. YoeB and YefM proteins co-eluted as single peaks in sequential Ni-affinity FPLC and Q-Sepharose ion-exchange chromatography implying the formation of a YoeB.YefM complex. The unstable antitoxin was removed from the mixture by natural proteolysis, and the residual YoeB protein was purified using ion exchange chromatography. Fluorescence anisotropy studies of the purified YoeB and YefM proteins showed a 2:1 stoichiometry of the complex, providing direct evidence for a physical complex between the proteins. Near- and far-UV circular dichroism spectroscopy of the purified toxin revealed that, similar to the Doc toxin, YoeB is a well-folded protein. Thermal denaturation experiments confirmed the conformational stability of the YoeB toxin, which underwent reversible thermal unfolding at temperatures up to 56 degrees C. The thermodynamic features of the toxin-antitoxin complex were similar. Taken together, our results support the notion of a correlation between differential physiological and structural stability in toxin-antitoxin modules.  相似文献   

14.
15.
In the competition for niches in natural resources, Pseudomonas aeruginosa utilizes the type VI secretion system to inject the toxic protein effector Tse2 into bacteria on cell–cell contact. The cytoplasm toxin immunity protein Tsi2 can neutralize Tse2 by physical interaction with the toxin, providing essential protection from toxin activity. Except for orthologues in P. aeruginosa, Tsi2 antitoxin does not share detectable sequence homology with known proteins in public databases. The mechanism underlying toxin neutralization by Tsi2 remains unknown. We report here the crystal structure of Tsi2 at 2.28 Å resolution. Our structural and biophysical analyses demonstrate that the antitoxin adopts a previously unobserved superhelical conformation. Tsi2 is highly thermostable in the absence of the toxin in solution. Tsi2 assembles a dimer with 2-fold rotational symmetry, similar to that observed in other toxin–antitoxin systems. Dimerization is essential for the stable folding of Tsi2.  相似文献   

16.
17.
Programmed cell death (PCD) in bacteria In bacteria, cell death occurs under certain stressful conditions, and this process has been designated as programmed cell death (PCD). The biological basis of the PCD are two molecules, a stable toxin protein and an unstable antitoxin being either a short RNA molecule or a protein. The antitoxin has to be synthesized permanently to neutralize the toxin. Both components form a TA module. When the synthesis of the antitoxin is blocked or when it is degraded completely, the free toxin acts either bacteriostatic or bactericide. So far, five different mechanisms have been described of how the antitoxin neutralizes the toxin in the absence of stress. Sporulating Bacillus subtilis cells exert cannibalism that means they kill and lyse non‐sporulating cells to take up their nutrients. Streptococcus pneumoniae cells can carry out fratricide. They kill and lyse neighbouring cells, take up fragments of their chromosomal DNA and recombine them with their own DNA. This can result in the uptake of new genes. At the end, two examples of application of TA modules in biotechnology are described.  相似文献   

18.
19.
20.
Enterohaemorrhagic Escherichia coli O157:H7 harbours a cryptic plasmid, pOSAK1, that carries only three ORFs: mobA (involved in plasmid mobilization), ORF1 and ORF2. Predicted proteins encoded by these two ORFs were found to share a weak homology with RnlA and RnlB, respectively, a toxin–antitoxin system encoded on the E. coli K-12 chromosome. Here, we report that lsoA (ORF1) encodes a toxin and lsoB (ORF2) an antitoxin. In spite of the homologies, RnlB and LsoB functioned as antitoxins against only their cognate toxins and not interchangeably with each other. Interestingly, T4 phage Dmd suppressed the toxicities of both RnlA and LsoA by direct interaction, the first example of a phage with an antitoxin against multiple toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号