首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenoud N-acetyl-LTE4 elicited by endotoxin was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.  相似文献   

2.
Inhibition of leukotriene D4 catabolism by D-penicillamine   总被引:5,自引:0,他引:5  
Inhibition of the catabolism of the most biologically potent cysteinyl leukotriene, LTD4, was studied in rat hepatoma cells in vitro and in the rat in vivo. LTD4 dipeptidase, an ectoenzyme on the surface of AS-30D hepatoma cells, exhibited an apparent Km value of 6.6 microM for LTD4. D-Penicillamine and L-penicillamine inhibited this enzyme activity with apparent Ki values of 0.46 mM and 0.21 mM respectively. Bestatin, an inhibitor of the aminopeptidase activity of hepatoma cells, did not affect LTD4 hydrolysis at concentrations as high as 5 mM, indicating that the aminopeptidase did not contribute to LTD4 catabolism. In the rat in vivo, D-penicillamine also inhibited LTD4 catabolism. After intravenous injection of [3H]LTC4 an accumulation of [3H]LTD4 and a retarded formation of [3H]LTE4 were observed in the circulating blood after D-penicillamine pretreatment. Within 1 h after intravenous [3H]LTC4 injection, about 80% of the administered radioactivity was recovered in bile. After D-penicillamine pretreatment [3H]LTD4 was the major biliary leukotriene metabolite, whereas in untreated controls leukotriene metabolites more polar than LTC4 predominated in bile. After stimulation of endogenous leukotriene production in vivo by platelet-activating factor, N-acetyl-LTE4 was the major cysteinyl leukotriene detected in bile. D-Penicillamine treatment prior to platelet-activating factor resulted in the accumulation of LTD4, which under these circumstances was the major endogenous leukotriene metabolite detected in bile.  相似文献   

3.
1. The isolated perfused rat liver efficiently takes up cysteinyl leukotrienes (LTs) C4, D4, E4 and N-acetyl-LTE4 from circulation. More than 70% of these cysteinyl LTs are excreted from liver into bile within 1 h of onset of a 5 min infusion, while about 5% remain in the liver. About 20% of infused N-acetyl-LTE4 escapes hepatic first-pass extraction under our conditions. 2. Metabolites of LTC4 appearing in bile within 20 min of the onset of infusion include mainly LTD4 and N-acetyl-LTE4, but also omega-hydroxy-N-acetyl-LTE4 and omega-carboxy-N-acetyl-LTE4. Metabolites generated from omega-carboxy-N-acetyl-LTE4 by beta-oxidation from the omega-end represent the major biliary LTs secreted at later times. 3. Stimulation of the isolated perfused liver by the combined infusion of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 results in a transient increase of endogenous cysteinyl LT production, which is independent of extrahepatic cells. 4. The immunosuppressive drug cyclosporine causes a dose-dependent inhibition of hepatobiliary cysteinyl LT excretion, probably by interference with the sinusoidal uptake system for cysteinyl LTs.  相似文献   

4.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

5.
Metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney.   总被引:1,自引:0,他引:1  
The metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney was investigated. For this purpose LTC4, LTD4 or LTE4 were studied in separate experiments. The isolated perfused rat kidney metabolized all cysteinyl leukotrienes to the final metabolite N-acetyl-LTE4. In the presence of 5% albumin 50% of LTC4 was metabolized to LTD4 (22%), LTE4 (15%) and N-acetyl-LTE4 (13%) within 60 min. Excretion of radioactivity into urine was less than 1%. In contrast, in the absence of albumin, LTC4 was completely metabolized within 45 min to N-acetyl-LTE4, the sole and final metabolite of LTC4 found in the perfusion medium as well as in urine. After 60 min 19% and 42% of total radioactivity were found in the perfusion medium and in urine, respectively. Isolated glomeruli metabolized LTC4 to LTD4 and to LTE4 but not to N-acetyl-LTE4 at a rate comparable to the rate observed by the isolated perfused kidney in the absence of albumin. In contrast to isolated glomeruli isolated tubuli metabolized LTE4 to N-acetyl-LTE4 at a rate comparable to that observed by the isolated perfused kidney in the absence of albumin. The present study shows that the isolated perfused rat kidney metabolizes cysteinyl leukotrienes to the sole and final metabolite N-acetyl-LTE4. In the presence of albumin metabolism is slowed down and excretion of N-acetyl-LTE4 into urine is prevented.  相似文献   

6.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

7.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In single-pass perfused rat liver, the sinusoidal uptake of infused 3H-labelled leukotriene (LT) C4 (10 nmol.l-1) was inhibited by sulfobromophthalein. Inhibition was half-maximal at sulfobromophthalein concentrations of approximately 1.2 mumol.l-1 in the influent perfusate and leukotriene uptake was inhibited by maximally 34%. Sulfobromophthalein (20 mumol.l-1) also decreased the uptake of infused [3H]LTE4 (10 nmol.l-1) by 31%. Indocyanine green (10 mumol.l-1) inhibited the sinusoidal [3H]LTC4 uptake by 19%. Replacement of sodium in the perfusion medium by choline decreased the uptake of infused [3H]LTC4 (10 nmol.l-1) by 56%, but was without effect on the uptake of sulfobromophthalein. The canalicular excretion of LTC4, LTD4 and N-acetyl-LTE4 was inhibited by sulfobromophthalein. In contrast, the proportion of polar omega-oxidation metabolites recovered in bile following the infusion of [3H]LTC4 was increased. Taurocholate, which had no effect on the sinusoidal leukotriene uptake, increased bile flow and also the biliary elimination of the radioactivity taken up. With increasing taurocholate additions, the amount of LTD4 recovered in bile increased at the expense of LTC4. Following the infusion of [3H]LTD4 (10 nmol.l-1), a major biliary metabolite was LTC4 indicating a reconversion of LTD4 to LTC4. In the presence of taurocholate (40 mumol.l-1), however, this reconversion was completely inhibited. The findings suggest the involvement of different transport systems in the sinusoidal uptake of cysteinyl leukotrienes. LTC4 uptake is not affected by bile acids and has a sodium-dependent and a sodium-independent component, the latter probably being shared with organic dyes. Sulfobromophthalein also interferes with the canalicular transport of LTC4, LTD4 and N-acetyl-LTE4, but not with the excretion of omega-oxidized cysteinyl leukotrienes. The data may be relevant for the understanding of hepatic leukotriene processing in conditions like hyperbilirubinemia or cholestasis.  相似文献   

9.
Arachidonate metabolites are potent mediators generated in endotoxin shock. Following endotoxin administration (15 mg/kg) into unanesthetized rats, we found a rapid biliary secretion of peptide leukotrienes. Analysis of bile for peptide leukotrienes included organic solvent extractions, reversed phase-HPLC, radioimmunoassay (RIA), and spectrophotometry. The major immunoreactive endogenous leukotriene (LT) from bile was eluted between LTC4 and LTD4 in three chromatographic systems. It corresponded thereby to a biliary metabolite of injected LTC4 and LTD4 which in turn showed the ultraviolet spectrum of a peptide leukotriene. This demonstration of endotoxin-induced generation of peptide LTs in vivo was possible by sequential HPLC and RIA analyses in bile into which peptide LTs are eliminated from blood.  相似文献   

10.
omega-Oxidation with subsequent beta-oxidation from the omega-end is the major pathway for inactivation and degradation of leukotrienes. Oxidative degradation of leukotriene E4 (LTE4), N-acetyl-LTE4, and LTB4 was inhibited by the omega-trifluoro analogs of LTE4, omega-trifluoro-LTE4 (omega-F3-LTE4), and (1S,2R)-5-(3-[1-hydroxy-15,15,15-trifluoro-2-(2-1H- tetrazol-5-ylethyl-thio)pentadeca-3(E),5(Z)-dienyl+ ++]phenyl)-1H-tetrazole (LY 245769). The latter substance inhibited the oxidative degradation of LTE4 and N-acetyl-LTE4 in the rat in vivo by 50% at a dose of 7 mumol/kg body weight. In rat hepatocyte cultures both omega-trifluoro analogs interfered with the omega-oxidation of N-acetyl-LTE4 and LTB4 with IC50 values of about 4 microM. Both analogs inhibited the omega-hydroxylation in isolated rat liver microsomes with IC50 values between 16 and 37 microM. This inhibition is apparently competitive. In addition, in liver cytosol, the conversion of the omega-hydroxylated leukotrienes to omega-carboxy-LTE4 and omega-carboxy-LTB4 was inhibited by both compounds. omega-Trifluoro analogs of leukotrienes provide a new tool for interfering with the inactivation of leukotrienes in the omega-oxidation pathway.  相似文献   

11.
The biosynthesis of leukotrienes (LT) C4 and B4 is followed by an export of these mediators into the extracellular space. This transport was characterized using plasma membrane vesicles prepared from mastocytoma cells and identified as an ATP-dependent primary active process. The apparent Km-values were 110 nM for LTC4 and 48 microM for ATP. The transport rate was highest for LTC4, whereas LTD4, LTE4, and N-acetyl-LTE4 were transported with relative rates of 31, 12 and 8%, respectively, at a concentration of 10 nM. LTB4 transport was also dependent on ATP. LTC4 transport was inhibited by LTD4 receptor antagonists (IC50 = 1.0 microM for MK-571 and 1.3 microM for LY245769) and by the inhibitor of leukotriene biosynthesis MK-886 (IC50 = 1.8 microM). The ATP-dependent export carrier for leukotrienes in leukotriene-synthesizing cells represents a novel member of the family of ATP-dependent exit pumps.  相似文献   

12.
Metabolism and analysis of cysteinyl leukotrienes in the monkey   总被引:11,自引:0,他引:11  
Predominant hepatobiliary elimination from blood and subsequent enterohepatic circulation of cysteinyl leukotrienes is demonstrated in the monkey Macaca fascicularis. From intravenous [3H]leukotriene C4, about 40% were recovered as metabolites in bile and about 20% in urine within 5 h. [3H]Leukotriene E4 was a predominant metabolite of defined structure in blood plasma, bile, and urine. From intraduodenal [3H]leukotriene C4, about 5% were recovered as metabolites in bile and about 8% in urine within 8 h. Endogenous cysteinyl leukotrienes generated in vivo were measured after implantation of a subcutaneously looped biliary bypass. Tapping of the loop allowed access to bile and prevented interference by leukotrienes produced by surgical trauma (Denzlinger, C., Rapp, S., Hagmann, W., and Keppler, D. (1985) Science 230, 330-332). Endogenous cysteinyl leukotrienes were analyzed in bile, urine, and blood plasma by the sequential use of high-performance liquid chromatography and a radioimmunoassay that was optimized for leukotriene E4 as a predominant metabolite detected in the tracer studies. Biliary leukotriene E4 rose from less than 0.2 to 9 nmol/liter, when leukotriene synthesis was elicited in anesthesized monkeys by staphylococcal enterotoxin B administered intragastrically. This study provides an approach to the analysis of cysteinyl leukotrienes in primates and serves to define the role of these mediators under pathophysiological as well as physiological conditions in vivo.  相似文献   

13.
Ethanol-induced inhibition of leukotriene degradation by omega-oxidation   总被引:2,自引:0,他引:2  
omega-Oxidation of leukotrienes is a major pathway in the degradation and inactivation of these proinflammatory mediators. Ethanol inhibited this process in vivo and in vitro. In rat liver in vivo the catabolism of LTE4 to omega-carboxylated leukotrienes was inhibited by 57% by an ethanol dose of 25 mmol/kg body mass administered intragastrically. The site of inhibition was the oxidation of omega-hydroxy-N-acetyl-LTE4 to omega-carboxy-N-acetyl-LTE4 resulting in an accumulation of omega-hydroxy-N-acetyl-LTE4 and of N-acetyl-LTE4. Analogous results were obtained for the oxidative degradation of LTB4 and omega-hydroxy-LTB4 in rat hepatocyte suspensions. Ethanol, at a concentration of 12.5 mmol/l (0.07%; by vol.), caused 68% inhibition of the oxidation of omega-hydroxy-LTB4 by 50% in hepatocyte suspensions. The conversion of omega-hydroxy-LTB4 to omega-carboxy-LTB4 by rat and human liver cytosol was inhibited by ethanol with half maximal concentrations of 100 mumols/l and 300 mumols/l, respectively. Our measurements indicate that direct interference by ethanol of the omega-oxidation of leukotrienes as well as an increased NADH/NAD+ ratio induced by ethanol led to the inhibition of leukotriene degradation. The impairment of leukotriene inactivation in the liver by ethanol may contribute to the development of the inflammatory reaction in acute alcoholic liver disease.  相似文献   

14.
Adaptive immune responses begin after antigen-bearing dendritic cells (DCs) traffic from peripheral tissues to lymph nodes. Here, we show that DC migration from skin to lymph nodes utilizes the leukotriene C(4) (LTC(4)) transporter multidrug resistance-associated protein 1 (MRP1). DC mobilization from the epidermis and trafficking into lymphatic vessels was greatly reduced in MRP1(-/-) mice, but migration was restored by exogenous cysteinyl leukotrienes LTC(4) or LTD(4). In vitro, these cysteinyl leukotrienes promoted optimal chemotaxis to the chemokine CCL19, but not to other related chemokines. Antagonism of CCL19 in vivo prevented DC migration out of the epidermis. Thus, MRP-1 regulates DC migration to lymph nodes, apparently by transporting LTC(4), which in turn promotes chemotaxis to CCL19 and mobilization of DCs from the epidermis.  相似文献   

15.
Leukotriene C(4) synthase (LTC(4)S), the terminal 5-lipoxygenase pathway enzyme that is responsible for the biosynthesis of cysteinyl leukotrienes, has been deleted by targeted gene disruption to define its tissue distribution and integrated pathway function in vitro and in vivo. The LTC(4)S (-/-) mice developed normally and were fertile. LTC(4)S activity, assessed by conjugation of leukotriene (LT) A(4) methyl ester with glutathione, was absent from tongue, spleen, and brain and > or = 90% reduced in lung, stomach, and colon of the LTC(4)S (-/-) mice. Bone marrow-derived mast cells (BMMC) from the LTC(4)S (-/-) mice provided no LTC(4) in response to IgE-dependent activation. Exocytosis and the generation of prostaglandin D(2), LTB(4), and 5-hydroxyeicosatetraenoic acid by BMMC from LTC(4)S (-/-) mice and LTC(4)S (+/+) mice were similar, whereas the degraded product of LTA(4), 6-trans-LTB(4), was doubled in BMMC from LTC(4)S (-/-) mice because of lack of utilization. The zymosan-elicited intraperitoneal extravasation of plasma protein and the IgE-mediated passive cutaneous anaphylaxis in the ear were significantly diminished in the LTC(4)S (-/-) mice. These observations indicate that LTC(4)S, but not microsomal or cytosolic glutathione S-transferases, is the major LTC(4)-producing enzyme in tissues and that its integrated function includes mediation of increased vascular permeability in either innate or adaptive immune host inflammatory responses.  相似文献   

16.
Characterization of the human cysteinyl leukotriene 2 receptor   总被引:16,自引:0,他引:16  
The contractile and inflammatory actions of the cysteinyl leukotrienes (CysLTs), LTC(4), LTD(4), and LTE(4), are thought to be mediated through at least two distinct but related CysLT G protein-coupled receptors. The human CysLT(1) receptor has been recently cloned and characterized. We describe here the cloning and characterization of the second cysteinyl leukotriene receptor, CysLT(2), a 346-amino acid protein with 38% amino acid identity to the CysLT(1) receptor. The recombinant human CysLT(2) receptor was expressed in Xenopus oocytes and HEK293T cells and shown to couple to elevation of intracellular calcium when activated by LTC(4), LTD(4), or LTE(4). Analyses of radiolabeled LTD(4) binding to the recombinant CysLT(2) receptor demonstrated high affinity binding and a rank order of potency for competition of LTC(4) = LTD(4) LTE(4). In contrast to the dual CysLT(1)/CysLT(2) antagonist, BAY u9773, the CysLT(1) receptor-selective antagonists MK-571, montelukast (Singulair(TM)), zafirlukast (Accolate(TM)), and pranlukast (Onon(TM)) exhibited low potency in competition for LTD(4) binding and as antagonists of CysLT(2) receptor signaling. CysLT(2) receptor mRNA was detected in lung macrophages and airway smooth muscle, cardiac Purkinje cells, adrenal medulla cells, peripheral blood leukocytes, and brain, and the receptor gene was mapped to chromosome 13q14, a region linked to atopic asthma.  相似文献   

17.
Little is known about the metabolic fate of the sulfidopeptide leukotrienes (LTC4/D4/E4). Earlier studies using radiolabeled leukotrienes have shown that these potent molecules are concentrated and metabolized in the liver when administered to mice and that isolated rat hepatocytes have a high affinity uptake system for LTE4. N-Acetyl-LTE4 has been identified as a metabolite of LTC4 in the bile of rats, but the majority of the metabolites in these studies were not characterized. Based on these earlier reports, incubation of LTE4 with isolated rat hepatocytes was chosen as a model for the study of sulfidopeptide leukotriene metabolism. [3H]LTE4 was incubated with isolated rat hepatocytes and the metabolites formed were purified extensively by ODS flash column chromatography, TLC, and reverse phase-high pressure liquid chromatography. Metabolites were identified by retention of the radiolabel and UV absorbance at 280 nm. Purified metabolites were characterized by UV spectroscopy, fast atom bombardment mass spectrometry, negative ion chemical ionization gas chromatography-mass spectrometry, and electron impact gas chromatography-mass spectrometry. Six LTE4 hepatocyte metabolites were characterized. Metabolite A was determined to be N-acetyl-LTE4. Metabolite B was determined to be the omega-oxidation product 20-carboxy-N-acetyl-LTE4. Metabolite C was characterized as the beta-oxidation product 18-carboxydinor-N-acetyl-LTE4. A further round of beta-oxidation with a concomitant double bond reduction produced Metabolite D, identified as 16-carboxytetranordihydro-N-acetyl-LTE4. The reduction of the 14-15 double bond was most likely the result of the action of 2,4-dienoyl-CoA reductase. The UV spectrum of Metabolite E indicated the presence of a conjugated tetraene, and this metabolite was determined to be 16-carboxytetranor-delta 13-N-acetyl-LTE4. Metabolite F was identified as 14-carboxyhexanor-N-acetyl-LTE4. The observed pathway of beta-oxidation of LTE4 proceeded entirely from the C-20 methyl terminus after omega-oxidation which is in contrast to the known metabolic fate of other eicosanoids. This may be due to the failure to generate the required thioester at C-1 in LTE4 through a strong interaction of the C-5 hydroxy group with the C-1 carboxyl.  相似文献   

18.
Tear fluid was obtained from allergic subjects from control eyes and eyes challenged with specific allergen and levels of leukotriene C4 (LTC4)-immunoreactivity determined by radioimmunoassay. Formal identification of the leukotrienes released was not possible but the levels of LTC4-immunoreactive material in allergen-challenged tear fluid (4.9 +/- 2.3 ng/ml, n = 9) were significantly higher (p less than 0.01) than those in control tear fluid (0.07 +/- 0.06 ng/ml, n = 9). These results provide evidence that leukotrienes, which account for the biological activity of slow reacting substance of anaphylaxis, may be released in allergic reactions in vivo in man.  相似文献   

19.
Chain shortening via beta-oxidation from the omega-end has been recognized as the major pathway for the degradation of cysteinyl leukotrienes as well as leukotriene B4 (LTB4). The metabolic compartmentation of this pathway was studied using peroxisomes purified from normal and clofibrate-treated rat liver. beta-Oxidation products of omega-carboxy-LTB4, including omega-carboxy-dinor-LTB4 identified by gas chromatography-mass spectrometry, were formed by the isolated peroxisomes. The reaction was dependent on CoA, ATP, and NAD and was stimulated by FAD. NADPH was necessary for the further metabolism of omega-carboxy-dinor-LTB4. Together with microsomes a degradation of omega-carboxy-LTB4 also proceeded in isolated mitochondria in the presence of CoA, ATP, and carnitine. beta-Oxidation of the cysteinyl leukotriene omega-carboxy-N-acetyl-leukotriene E4 was observed only with isolated peroxisomes in combination with lipid-depleted microsomes. Direct photoaffinity labeling using omega-carboxy-[3H] LTB4 and omega-carboxy-N-[3H]acetyl-LTE4 served to identify peroxisomal leukotriene-binding proteins. The bifunctional protein (EC 4.2.1.17 and 1.1.1.35) and 3-ketoacyl-CoA thiolase (EC 2.3.1.16) of the peroxisomal beta-oxidation system were the predominantly labeled polypeptides as revealed by precipitation with monospecific antibodies. In vivo studies with N-acetyl-[3H2]LTE4, N-acetyl-[3H8]LTE4, and N-[14C]acetyl-LTE4 after treatment with the peroxisome proliferator clofibrate indicated formation and biliary excretion of large amounts of metabolites more polar than omega-carboxy-tetranor-N-acetyl-LTE3 including omega-carboxy-tetranor-delta 13-N-acetyl-LTE4 and omega-carboxy-hexanor-N-acetyl-LTE3. Increased formation of beta-oxidized catabolites of N-acetyl-LTE4 and LTB4 was also observed in hepatocytes isolated after clofibrate treatment. Our results indicate that peroxisomes play a major role in the beta-oxidation of leukotrienes from the omega-end. Whereas omega-carboxy-LTB4 was beta-oxidized both in isolated peroxisomes and mitochondria, the cysteinyl leukotriene omega-carboxy-N-acetyl-LTE4 was exclusively degraded in peroxisomes.  相似文献   

20.
Adenosine is a renal vasoconstrictor that plays an important role in mediating renal adaptive responses to decreases in renal perfusion pressure. It is known that adenosine acts on the metabolism of arachidonic acid, but the direct repercussions of adenosine in the production of renal prostaglandins and leukotrienes have not been studied. This study was undertaken to evaluate the effect of the intrarenal infusion of adenosine upon the urinary elimination of arachidonic acid derivatives. Samples of urine were collected with lysine acetylsalicylate and determination of prostaglandins (PGs) and leukotrienes (LTs) was performed by radioimmunoassay of samples previously separated by HPLC. The infusion of adenosine decreases the urinary excretion of 6-keto-PGF1 alpha and TxB2 significantly. There was no significant change in urinary excretion of PGE2 while LTB4 and LTC4 showed a tendency to increase. These results suggest that a fall in the synthesis of PGI2 along with an increase in LTC4, which is a constrictor of mesangial cells, could be responsible for the renal vasoconstriction phase of adenosine. Therefore, it was concluded that adenosine vasoconstriction is mediated through the inhibition of the cyclo-oxygenase pathway, diminishing the synthesis of PG vasodilators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号