首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remobilisation of vacuolar stored nitrate in barley root cells   总被引:12,自引:0,他引:12  
Double-barrelled nitrate-selective microelectrodes have been used to measure the time course of the remobilisation of vacuolar stored nitrate in barley (Hordeum vulgare L. cv. Klaxon) root cells during 24 h of nitrate deprivation. These measurements showed that there are different time courses for this process in epidermal and cortical cells of the same root. The remobilisation was much slower from cortical cell vacuoles and had a time course which was similar to that obtained for tissue digests of the roots. The microelectrodes were also used to measure the nitrate concentration in sap exuding from detopped seedlings. These measurements showed that there was a gradual decrease in the delivery of nitrate to the shoot during this time. Root nitrate reductase activity of neither shoots nor roots changed significantly during the first 24 h. Direct measurement of the cytosolic nitrate in a root epidermal cell showed that during short-term changes, such as a 20-min exposure to zero external nitrate supply, cytosolic nitrate was maintained relatively unchanged. Net nitrate efflux from the roots was measurable during the initial 5 h of the zero-nitrate incubation period; after this time no further nitrate efflux was detectable. These measurements are discussed in relation to the nitrate budget of a root cell and we conclude that during the first 24 h of nitrate withdrawal vacuolar nitrate can be readily mobilised to supply the nitrogen demands of the seedling and to maintain the cytosolic nitrate concentration. Received: 31 July 1997 / Accepted 11 December 1997  相似文献   

2.
Ca2+-selective microelectrodes   总被引:1,自引:0,他引:1  
D Ammann 《Cell calcium》1985,6(1-2):39-55
Ca2+-selective microelectrodes based on the synthetic neutral carrier ETH 1001 can be used for quantitative intracellular measurements of resting Ca2+-activities and of slowly changing Ca2+-levels (response time in the order of seconds). Microelectrodes with tip diameters greater than 0.3 micron show selectivities that yield a detection limit between 10(-8) and 10(-7) M Ca2+ in an intracellular background. The Ca2+-activity is obtained together with electrical parameters of the cell (e.g. cell membrane potential and membrane resistance or conductivity). Simultaneous monitoring of other ion-activities is accessible (double- or multi-barrelled microelectrodes). The Ca2+-determination is extremely local, i.e. it probably does not indicate an averaged cytosolic activity in every situation (e.g. localized transients).  相似文献   

3.
Using Ca2+-selective microelectrodes and fura 2-dextran ratio imaging, the cytosolic free [Ca2+] was measured in Sinapis alba root hair cells. Both methods yielded comparable results, i.e. values between 158 to 251 nM for the basal [Ca2+] of the cells and an elevated [Ca2+] of 446 to 707 nM in the tip region. The zone of elevated [Ca2+] reaches 40 to 60 [mu]m into the cell and is congruent with the region of inwardly directed Ca2+ net currents measured with an external Ca2+- selective vibrating electrode. The channel-blocker La3+ eliminates these currents, stops growth, and almost completely eliminates the cytosolic [Ca2+] gradient without affecting the basal level of the ion. Growth is also inhibited by pressure-injected dibromo-1,2-bis(o-aminophenoxy)ethane-N,N,N[prime],N[prime]-tetraacetic acid, which causes a decrease in the [Ca2+] in the tip in a concentration-dependent manner. Indole-3-acetic acid, used as a model stimulus, decreases cytosolic free [Ca2+] by 0.2 to 0.3 pCa units in the tip, but only by about 0.1 pCa unit in the shank. Nongrowing root hairs may or may not display a [Ca2+] gradient, but still reversibly respond to external stimuli such as La3+, Ca2+, or indole-3-acetic acid with changes in cytosolic free [Ca2+]. During short time periods, dicyclohexylcarbodiimide inhibition of the plasma membrane H+-ATPase, which stops growth, does not abolish the [Ca2+] gradient, nor does it change significantly the basal [Ca2+] level. We conclude that the cytosolic [Ca2+] gradient and an elevated [Ca2+] in the tip, as in other tip-growing cells, is essential for tip growth in root hairs; however, its presence does not indicate growth under all circumstances. We argue that with respect to Ca2+, tip growth regulation and responses to external signals may not interfere with each other. Finally, we suggest that the combination of the methods applied adds considerably to our understanding of the role of cytosolic free [Ca2+] in signal transduction and cellular growth.  相似文献   

4.
Sertoli cells play a pivotal role in regulation and maintenance of spermatogenesis. They are hormonally regulated predominantly by follicle-stimulating hormone (FSH) and testosterone (T). Although FSH and T have distinct mechanisms of action they act synergistically in promoting spermatogenesis. Stimulation of freshly isolated Sertoli cells with FSH evokes a prompt rise in cytosolic calcium which is quantitatively reproduced by cAMP. The cytosolic calcium response to FSH in Sertoli cells is predominantly attributable to serial signaling after the generation of endogenous cAMP. Calcium homeostasis of Sertoli cells may also be regulated by cAMP-independent metabolism. Vasoactive testicular paracrine hormones such as angiotensin II (AII) and vasopressin acting via inositol triphosphate generation induce cytosolic calcium rise predominantly derived from the thapsigargin-sensitive endoplasmic reticulum. Investigations involving androgens action on cytosolic calcium reveal a common mechanism of action between the peptide and steroid regulators of Sertoli cell function, indicating that cytosolic calcium ions may represent a unifying biochemical mechanism that could explain the synergism of FSH and T. Androgens rapidly and specifically increase cytosolic calcium, consistent with a plasma membrane site of action. This argues for the possible existence of a short term non-genomic signaling pathway in hormonal regulation of Sertoli cell function in addition to the classical longer term, slower genomic response.  相似文献   

5.
Summary Plasma membrane vesicles isolated from onion roots showed oxaloacetate reductase activity as well as other oxidoreductase activities. Purification and further sequencing showed that the protein responsible for the activity is a 40 kDa protein which corresponds to the cytosolic soluble malate dehydrogenase. However, the activity remained bound to the membrane after repeated freezing and thawing cycles and further washing, excluding a cytosolic contamination as the source of the activity. Furthermore, a second 28 kDa protein has been copurified together with the 40 kDa protein. The plasmalemma oxaloacetate reductase activity shows both donor and acceptor sites located towards the cytoplasmic side of the plasma membrane. This enzyme catalyzed the oxidation of NADH by oxaloacetate and the reduction of NAD+ by malate in the presence of an oxaloacetate-withdrawing system. We conclude that a significant amount of the cytosolic malate dehydrogenase can be specifically attached to the cytosolic face of the plasmalemma. A possible role in a putative malate shuttle associated to the plasma membrane is discussed.Abbreviations AFR ascorbate free radical - DQ duroquinone - OA oxaloacetate - DPIP dichlorophenolindophenol - MDH malate dehydrogenase - PHMB p-hydroxymercuribenzoate  相似文献   

6.
Studies on the mechanism of chemically induced intestinal epithelial injury were carried out using isolated, rat small intestinal epithelial cells. Compounds such as 2,4-dinitrophenol (DNP) and diethyl maleate (DEM), caused NADH loss, an increase in cytosolic Ca2+ concentration and protein thiol loss. Further, these compounds accelerated cell aggregation and decreased cell viability. Calmodulin antagonists inhibited protein thiol loss induced by either of the compound, inhibited cell aggregation and prolonged cell viability, but did not influence NADH loss. It has been reported that the calmodulin-binding protein may regulate cytoskeletal activity. Therefore, the inhibition of protein thiol loss by calmodulin antagonist may be due to a dissociation of calmodulin-binding proteins from cytoskeletal elements. Salicylate also inhibited protein thiol loss induced by DNP and DEM, and inhibited cell aggregation. However, salicylate may have a direct effect in reducing the cytosolic free Ca2+ concentration by complexation and subsequent facilitated release of Ca2+ from cells. Further, in the present study, the induction of cell aggregation may be caused by the appearance of specific sites on the cell membrane surface to which arsenazo III could adsorb, since adsorption of arsenazo III to the isolated epithelial cells seemed to correlate with increased cell aggregation.  相似文献   

7.
The effects of acetaminophen and its major toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI), have been investigated in hepatocytes isolated from 3-methylcholanthrene-pretreated and -untreated rats, respectively. The two compounds produced qualitatively similar changes although the quinone imine was toxic with shorter incubations periods and at lower doses. Both agents caused an elevation of cytosolic Ca2+, assessed by phosphorylase a activity, which was accompanied by the concomitant appearance of plasma membrane blebs. A loss of mitochondrial Ca2+ was also observed. This disruption of Ca2+ homeostasis always preceded cell death. Studies with NAPQI showed that low doses were able to cause complete Ca2+ release from isolated liver mitochondria which was accompanied by pyridine nucleotide oxidation and preceded membrane damage. NAPQI also produced a rapid, dose-dependent depletion of both cytosolic and mitochondrial reduced glutathione as well as a loss of protein-bound SH groups. This loss of protein thiols may have been responsible for the observed inhibition of the high-affinity Ca2+-ATPase activity of the plasma membrane fraction isolated from NAPQI-treated cells. In addition, NAPQI inhibited microsomal Ca2+ uptake which would further contribute to the elevation in cytosolic Ca2+. Our results suggest that acetaminophen and N-acetyl-p-benzoquinone imine exert their cytotoxic effects via a disruption of Ca2+ homeostasis secondary to the depletion of soluble and protein-bound thiols. This mechanism may prove to be of general applicability to a variety of hepatotoxins.  相似文献   

8.
9.
The stomatal complex of Zea mays is composed of two pore-forming guard cells and two adjacent subsidiary cells. For stomatal movement, potassium ions and anions are thought to shuttle between these two cell types. As potential cation transport pathways, K(+)-selective channels have already been identified and characterized in subsidiary cells and guard cells. However, so far the nature and regulation of anion channels in these cell types have remained unclear. In order to bridge this gap, we performed patch-clamp experiments with subsidiary cell and guard cell protoplasts. Voltage-independent anion channels were identified in both cell types which, surprisingly, exhibited different, cell-type specific dependencies on cytosolic Ca(2+) and pH. After impaling subsidiary cells of intact maize plants with microelectrodes and loading with BCECF [(2',7'-bis-(2-carboxyethyl)-5(and6)carboxyflurescein] as a fluorescent pH indicator, the regulation of ion channels by the cytosolic pH and the membrane voltage was further examined. Stomatal closure was found to be accompanied by an initial hyperpolarization and cytosolic acidification of subsidiary cells, while opposite responses were observed during stomatal opening. Our findings suggest that specific changes in membrane potential and cytosolic pH are likely to play a role in determining the direction and capacity of ion transport in subsidiary cells.  相似文献   

10.
Summary A human intestinal epithelial cell line (Intestine 407) is known to retain receptors for intestinal secretagogues such as acetylcholine (ACh), histamine, serotonin (5-HT) and vasoactive intestinal peptide (VIP). The cells were also found to possess separate receptors for secretin and ATP, the stimulation of which elicited transient hyperpolarizations coupled to decreased membrane resistances. These responses were reversed in polarity at the K+ equilibrium potential. The hyperpolarizing responses to six agonists were reversibly inhibited by quinine or quinidine. By means of Ca2+-selective microelectrodes, increases in the cytosolic free Ca2+ concentration were observed in response to individual secretagogues. The time course of Ca2+ responses coincided with that of hyperpolarizing responses. The responses to ACh and 5-HT were abolished by a reduction in the extracellular Ca2+ concentration down to pCa 7 or by application of Co2+. Thus, in Intestine 407 cells, not only the intestinal secretagogues, which are believed to act via increased cytosolic Ca2+ (ACh, 5-HT and histamine), but also those which elevate cyclic AMP (VIP, secretin and ATP) induce increases in cytosolic Ca2+, thereby activating the K+ conductance. It is likely that the origin of increased cytosolic Ca2+ is mainly extracellular for ACh- and 5-HT-induced responses, whereas histamine, VIP, secretin and ATP mobilize Ca2+ from the internal compartment.  相似文献   

11.
Calcium-selective microelectrodes were used to measure the free calcium-ion concentration ([Ca2+]i) in early-cleaving embryonic cells of the golden medaka, Oryzias latipes, a fresh water teleost fish. Embryos could be dechorionated as early as the four-cell stage using a three-step technique consisting of removal of some yolk to enlarge the perivitelline space, partial digestion of the chorion with pancreatin, and removal of the weakened chorion with forceps. Dechorionated embryos underwent cleavage at a normal rate. Intracellular cytosolic [Ca2+]i was monitored by impaling blastomeres first with a microelectrode filled with 5 M potassium acetate to measure membrane potential, and a few minutes later with a calcium-selective microelectrode. During nine rounds of cytokinesis from a total of six different embryos, cytosolic [Ca2+]i remained constant (with apparently random fluctuations of less than +/- 0.1 microM). During two successive cleavages in one embryo, however, [Ca2+]i rose transiently fourfold above the original resting level to 1.32 and 1.20 microM in synchrony with each period of cytokinesis and returned after each rise to submicromolar levels. Because a calcium-selective microelectrode can detect [Ca2+]i changes only in the immediate vicinity of its 2-microns tip, we interpreted these data to suggest that, although [Ca2+]i in most areas of the cytosol remains between 0.01 and 0.40 microM (mean of 0.14 microM), there may be small regions of the cell in which [Ca2+]i undergoes a substantial increase at the time of cleavage. Evidence also is presented to suggest that the membrane potential in these blastomeres undergoes a slow net hyperpolarization during early cleavage stages.  相似文献   

12.
A review of literature, reporting values of cytoplasmic/cytosolic [NO3] in plant cells, identified two major areas of disagreement: (1) disparity in the absolute values within the same system, and (2) constancy versus variability in cytoplasmic/cytosolic [NO3] with varying [NO3]o. These differences are related to the techniques used by the different authors. Estimates of cytoplasmic [NO3] by compartmental analysis and by cell fractionation were consistently higher than the estimates by NO3selective microelectrodes and by techniques based upon in vivo and in vitro nitrate reductase activity (NRA). A model recognizing more than one cytoplasmic ionic pool would satisfactorily reconcile the differences in both aspects, i.e. absolute values and constancy. Compartmental analysis and cell fractionation techniques may measure the amount of NO3 in the cytoplasm as a whole (including organelles); by contrast, NO3 selective microelectrodes and NRA estimate only the cytosolic NO3 and, hence, may result in lower estimates. Thus, variable organellar pool(s) may maintain a constant cytosolic pool as estimated by microelectrodes. However, certain observations remain at odds with the notion of a constant cytosolic [NO3].  相似文献   

13.
In the collecting ductin vivo, the principal cell encounters a wide range in luminal flow rate and luminal concentration of NaCl. As a consequence, there are substantial variations in the transcellular fluxes of Na+ and Cl, conditions which would be expected to perturb cell volume and cytosolic concentrations. Several control mechanisms have been identified which can potentially blunt these perturbations, and these entail cellular regulation of the luminal membrane Na+ channel and peritubular membrane K+ and Cl channels. To illustrate the impact of these regulated channels, a mathematical model of the principal cell of the rat cortical collecting duct has been developed, in which ion channel permeabilities are either constant or regulated. In comparison to the model with fixed permeabilities, the model with regulated channels demonstrates enhanced cellular homeostasis following steady-state variation in luminal NaCl. However, in the transient response to a cytosolic perturbation, the difference in recovery time between the models is small. An approximate analysis is presented which casts these models as dynamical systems with constant coefficients. Despite the presence of regulated ion channels, concordance of each model with its linear approximation is verified for experimentally meaningful perturbations from the reference condition. Solution of a Lyapunov equation for each linear system yields a matrix whose application to a perturbation permits explicit estimation of the time to recovery. Comparison of these solution matrices for regulated and non-regulated cells confirms the similarity of the dynamic response of the two models. These calculations suggest that enhanced homeostasis by regulated channels may be protective, without necessarily hastening recovery from cellular perturbations.  相似文献   

14.
The exact ion gradients across cellular membranes and their changes due to metabolic or transport processes can be best studied with the use of ion-selective microelectrodes. The last decade of research using ion-selective microelectrodes in intact cells has proven this technique to be indispensable for the investigation of a variety of physiological questions of regulatory processes, membrane transport, cellular signalling, developmental biology and plant nutrition. Their application to selected problems has led to numerous exciting observations, many of which have changed our view concerning cellular responses to environmental stimuli and in many instances have led to a new understanding of plant cell physiology. Since, with these electrodes, intracellular as well as extracellular free ion concentrations can be simultaneously detected with electrical transport parameters such as membrane potential and membrane conductance, they can be powerful tools in the hands of many plant cell biologists.  相似文献   

15.
The interaction of dopamine with model membranes, isolated G-actin, and living cells, such as Mauthner neurons and fibroblast-like BHK-21 cells has been studied. It was found that in vitro dopamine passes through the phospholipid membrane and directly polymerizes G-actin due to incorporation into threads as their integral part. In in vivo conditions, it penetrates inside the cell and induces the appearance of a network of actin filaments in loci rich in globular actin. The data suggest that there exists a mechanism of dopamine interaction with living cells, which is based on direct polymerization of cytosolic G-actin as its cellular target. The reorganization of the actin cytoskeleton leads to changes in the morphofunctional status of cells.  相似文献   

16.
The reliability of two different membrane resistance-measuring methods that use a single intracellular microelectrode was tested against a conventional method that uses two intracellular microelectrodes. The first single-electrode method used a single square current pulse and required a constant microelectrode resistance. This method was unreliable because the electrode resistance changed markedly on cell penetration and changed with time within the cell. The second method used a high frequency square wave for injecting current into the cell and depended upon the membrane having a much longer RC (resistance × capacitance)-time constant than the microelectrode. The resistance values obtained by this latter method were usually different from membrane resistances obtained at the same time on the same cells using two intracellular microelectrodes. Therefore, neither single intracellular microelectrode method was as reliable as the conventional method. All tests were with coleoptile cells of Avena sativa var. Victory.  相似文献   

17.
The manufacture and use of triple-barreled microelectrodes, which are capable of simultaneous in vivo measurement of intracellular pH and the activities of K+ or NO3- and cell membrane potential (Em), are described. Scanning electron micrographs showed that the three tips were aligned and that the overall tip diameter was approximately 0.8 [mu]m. When filled with 100 mM KCl, all three barrels simultaneously reported identical transmembrane potentials, showing that all three tips were located in the same subcellular compartment. Intracellular estimates of Em in barley (Hordeum vulgare L. cv Klaxon) root epidermal cells obtained with these triple-barreled microelectrodes were indistinguishable from those obtained using single- or double-barreled microelectrodes. Measurements made with triple-barreled K+ and pH-selective microelectrodes in root cells of 7-d-old barley plants grown in a nutrient solution containing 0.5 mM K+ yielded cytosolic and vacuolar populations having mean K+ activity values of 71.3 and 68.7 mM, respectively. The associated mean pH values ([plus or minus]SE) were 7.26 [plus or minus] 0.06 (cytosol) and 5.18 [plus or minus] 0.08 (vacuole). Analysis of whole-tissue digests confirmed the microelectrode measurements. Measurements made using triple-barreled pH- and nitrate-selective microelectrodes confirmed earlier double-barreled measurements of pH and nitrate in barley root epidermal cells growing in 10 mM nitrate.  相似文献   

18.
Lung cytosolic fraction (23500 x g supernatant) activates cAMP synthesis by lung membrane adenylate cyclase (AC). 23 kDa and 29 kDa proteins were isolated from rabbit lung cytosolic fraction in a homogeneous state, as 'activators' of lung membrane AC. Both of these proteins possess high adenylate kinase (AK) activity and are able to mimic the 'activating' effect of lung cytosol on the lung membrane AC in the standard incubation mixture devoid of adenylate kinase. The activating effect is abolished in the presence of adenylate kinase inhibitor DAPP and after heat- or trypsin-treatment of the cytosolic fraction. Commercial adenylate kinase or nonionic detergent Lubrol PX activate cAMP synthesis by lung membrane AC in a similar manner to that of cytosolic fraction. In the presence of commercial adenylate kinase or Lubrol PX no activating effect of the cytosolic fraction on lung membrane AC is revealed. The ability of cytosolic fraction, commercial adenylate kinase, Lubrol PX or purified 23 kDa and 29 kDa proteins to activate cAMP synthesis by lung membrane AC correlates with their ability to support the constant ATP (AC substrate) concentration in the AC assay mixture. Our data indicate that 'activation' of lung membrane AC in the presence of cytosolic fraction may be produced by cytosolic adenylate kinase activity which regenerates ATP from AMP in the presence of creatine kinase and creatine phosphate providing the substrate for cAMP synthesis by AC.  相似文献   

19.
Induction of cell fusion of plant protoplasts by electrical stimulation   总被引:7,自引:0,他引:7  
When an electric impulse of a few milliseconds was applied topoint-adherence protoplasts isolated from cultured cells ofRauwolfia serpentina through glass capillary microelectrodes,fusion of the protoplasts was immediately induced. This phenomenonseems to be related to transient changes in the membrane state,such as membrane excitation, induced by electrical stimulation. (Received February 22, 1979; )  相似文献   

20.
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号