首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins containing the baculovirus inhibitor of apoptosis repeats (BIR domains) have been identified in a wide range of species. BIR domain containing proteins are thought to inhibit caspases and thereby cause inhibition of apoptosis. A BIR domain containing protein has been recently identified by the Schizosaccharomyces pombe genome sequencing project. However, caspase-like proteins have not been found in yeasts, suggesting that the BIR domain containing proteins might play a fundamental role in cell regulation, in addition to their well-characterized role in inhibition of apoptosis. In this study, we have characterized Pbh1p, an S. pombe BIR domain containing protein. Construction and analysis of a null mutant in pbh1+ revealed that pbh1+ is essential for cell viability. Moreover, cells devoid of Pbh1p are defective in chromosome condensation and chromosome segregation. Thus, proper chromosome segregation requires the function of Pbh1p. Over-production of Pbh1p led to abnormalities in mitosis and cytokinesis, suggesting that the levels of Pbh1p are important for regulation of mitosis and cytokinesis.  相似文献   

2.
The Schizosaccharomyces pombe Cdc4 protein is required for the formation and function of the contractile ring, presumably acting as a myosin light chain. By using NMR spectroscopy, we demonstrate that purified Cdc4p is a monomeric protein with two structurally independent domains, each exhibiting a fold reminiscent of the EF-hand class of calcium-binding proteins. Although Cdc4p has one potentially functional calcium-binding site, it does not bind calcium in vitro. Three variants of Cdc4p containing single point mutations responsible for temperature-sensitive arrest of the cell cycle at cytokinesis (Gly-19 to Glu, Gly-82 to Asp, and Gly-107 to Ser) were also characterized by NMR and circular dichroism spectroscopy. In each case, the amino acid substitution only leads to small perturbations in the conformation of the protein. Furthermore, thermal unfolding studies indicate that, like wild-type Cdc4p, the three mutant forms are all extremely stable, remaining completely folded at temperatures significantly above those causing failure of cytokinesis in intact cells. Therefore, the altered phenotype must arise directly from a disruption of the function of Cdc4p rather than indirectly through a disruption of its overall structure. Several mutant alleles of Cdc4p also show interallelic complementation in diploid cells. This phenomenon can be explained if Cdcp4 has more than one essential function or, alternatively, if two mutant proteins assemble to form a functional complex. Based on the structure of Cdc4p, possible models for interallelic complementation including interactions with partner proteins and the formation of a myosin complex with Cdc4p fulfilling the role of both an essential and regulatory light chain are proposed.  相似文献   

3.
The fission yeast septation initiation network (SIN) triggers the onset of septum formation and cytokinesis. SIN proteins signal from the spindle pole body (SPB), to which they bind in a cell cycle-dependent manner, via the scaffold proteins sid4p and cdc11p. cdc11p becomes hyperphosphorylated during anaphase, when the SIN is active. We have investigated the phosphorylation state of cdc11p during mitosis in various mutant backgrounds. We show that association of cdc11p with the spindle pole body is required for its phosphorylation and that ectopic activation of the SIN results in hyperphosphorylation of cdc11p. We demonstrate that mitotic hyperphosphorylation of cdc11p requires the activity of cdc7p and that its dephosphorylation at the end of mitosis requires PP2A-par1p. Furthermore, spindle checkpoint arrest prevents cdc11p hyperphosphorylation. Finally, we show that the septation inhibitor byr4p interacts preferentially with hypophosphorylated cdc11p. We conclude that cdc11p hyperphosphorylation correlates with activation of the SIN and that this may be mediated primarily by cdc7p in vivo.  相似文献   

4.
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.  相似文献   

5.
Cytokinesis is the process by which one cell divides into two. Key in the cytokinetic mechanism of Schizosaccharomyces pombe is the contractile ring myosin, which consists of two heavy chains (Myo2p), two essential light chains (Cdc4p), and two regulatory light chains (Rlc1p). Cdc4p is a dumbbell-shaped EF-hand protein composed of N- and C-terminal domains separated by a flexible linker. The properties of these two domains are of particular interest because each is hypothesized to have independent functions in binding different components of the cytokinesis machinery. To help define these properties, we used NMR spectroscopy to compare the structure, stability, and dynamics of the isolated N- and C-terminal domains with one another and with native Cdc4p. On the basis of invariant chemical shifts, the N-domain retains the same structure in isolation as in the context of the full-length Cdc4p, whereas the C-domain appears markedly perturbed. This perturbation results from intramolecular binding of the residual linker sequence at the N-terminus of the C-domain in a mode similar to that used by native Cdc4p to associate with target polypeptide sequences. NMR relaxation, thermal denaturation, and amide hydrogen exchange experiments also indicate that the C-domain is less stable and more dynamic than the N-domain, both in isolation and in the full-length protein. We hypothesize that these properties reflect a conformational plasticity of the C-domain, which may allow Cdc4p to interact with several regulatory or contractile ring proteins necessary for cytokinesis.  相似文献   

6.
The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase-mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.  相似文献   

7.
Cdc14-family phosphatases play a conserved role in promoting mitotic exit and cytokinesis by dephosphorylating substrates of cyclin-dependent kinase (Cdk). Cdc14-family phosphatases have been best studied in yeast (for review, see [1, 2]), where budding yeast Cdc14 and its fission yeast homolog Clp1 are regulated partly by their localization; both proteins are thought to be sequestered in the nucleolus in interphase. Cdc14 and Clp1 are released from the nucleolus in mitosis, and in late mitosis conserved signaling pathways termed the mitotic exit network (MEN) and the septation initiation network (SIN) keeps Cdc14 and Clp1, respectively, out of the nucleolus through an unknown mechanism [3-6]. Here we show that the most downstream SIN component, the Ndr-family kinase Sid2, maintains Clp1 in the cytoplasm in late mitosis by phosphorylating Clp1 directly and thereby creating binding sites for the 14-3-3 protein Rad24. Mutation of the Sid2 phosphorylation sites on Clp1 disrupts the Clp1-Rad24 interaction and causes Clp1 to return prematurely to the nucleolus during cytokinesis. Loss of Clp1 from the cytoplasm in telophase renders cells sensitive to perturbation of the actomyosin ring but does not affect other Clp1 functions. Because all components of this pathway are conserved, this might be a broadly conserved mechanism for regulation of Cdc14-family phosphatases.  相似文献   

8.
9.
The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way.  相似文献   

10.
The proposed function of Cdc4p, an essential contractile ring protein in Schizosaccharomyces pombe, is that of a myosin essential light chain. However, five conditionally lethal cdc4 alleles exhibit complementation in diploids. Such interallelic complementation is not readily explained if the sole function of Cdc4p is that of a myosin essential light chain. Complementation of cdc4 alleles could occur only if different mutant forms can assemble into an active oligomeric complex or if Cdc4p has more than one essential function. To search for other proteins that may interact with Cdc4p, we performed a two-hybrid screen and identified two such candidates: one similar to Saccharomyces cerevisiae Vps27p and the other a putative phosphatidylinositol (PI) 4-kinase. Binding of Cdc4p to the latter and to myosin heavy chain (Myo2p) was confirmed by immunosorbent assays. Deletion studies demonstrated interaction between the Cdc4p C-terminal domain and the PI 4-kinase C-terminal domain. Furthermore, interaction was abolished by the Cdc4p C-terminal domain point mutation, Gly107 to Ser. This allele also causes failure of cytokinesis. Ectopic expression of the PI 4-kinase C-terminal domain caused cytokinesis defects that were most extreme in cells carrying the G107S allele. We suggest that Cdc4p plays multiple roles in cytokinesis and that interaction with a PI 4-kinase may be important for contractile ring assembly and/or function.  相似文献   

11.
12.
The bacterial elongation factor RfaH promotes the expression of virulence factors by specifically binding to RNA polymerases (RNAP) paused at a DNA signal. This behavior is unlike that of its paralog NusG, the major representative of the protein family to which RfaH belongs. Both proteins have an N-terminal domain (NTD) bearing an RNAP binding site, yet NusG C-terminal domain (CTD) is folded as a β-barrel while RfaH CTD is forming an α-hairpin blocking such site. Upon recognition of the specific DNA exposed by RNAP, RfaH is activated via interdomain dissociation and complete CTD structural rearrangement into a β-barrel structurally identical to NusG CTD. Although RfaH transformation has been extensively characterized computationally, little attention has been given to the role of the NTD in the fold-switching process, as its structure remains unchanged. Here, we used Associative Water-mediated Structure and Energy Model (AWSEM) molecular dynamics to characterize the transformation of RfaH, spotlighting the sequence-dependent effects of NTD on CTD fold stabilization. Umbrella sampling simulations guided by native contacts recapitulate the thermodynamic equilibrium experimentally observed for RfaH and its isolated CTD. Temperature refolding simulations of full-length RfaH show a high success towards α-folded CTD, whereas the NTD interferes with βCTD folding, becoming trapped in a β-barrel intermediate. Meanwhile, NusG CTD refolding is unaffected by the presence of RfaH NTD, showing that these NTD-CTD interactions are encoded in RfaH sequence. Altogether, these results suggest that the NTD of RfaH favors the α-folded RfaH by specifically orienting the αCTD upon interdomain binding and by favoring β-barrel rupture into an intermediate from which fold-switching proceeds.  相似文献   

13.
14.
Cdc25 and Ras are two proteins required for cAMP signalling in the budding yeast Saccharomyces cerevisiae. Cdc25 is the guanine nucleotide exchange protein that activates Ras. Ras, in turn, activates adenylyl cyclase. Cdc25 has a Src homology 3 (SH3) domain near the N-terminus and a catalytic domain in the C-terminal region. We find that a point mutation in the SH3 domain attenuates cAMP signalling in response to glucose feeding. Furthermore, we demonstrate, by using recombinant adenylyl cyclase and Cdc25, that the SH3 domain of Cdc25 can bind directly to adenylyl cyclase. Binding was specific, because the SH3 domain of Abp1p (actin-binding protein 1), which binds the 70,000 Mr subunit of adenylyl cyclase, CAP/Srv2, failed to bind adenylyl cyclase. A binding site for Cdc25-SH3 localised to the C-terminal catalytic region of adenylyl cyclase. Finally, pre-incubation with Ras enhanced the SH3-bound adenylyl cyclase activity. These studies suggest that a direct interaction between Cdc25 and adenylyl cyclase promotes efficient assembly of the adenylyl cyclase complex.  相似文献   

15.
Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the activation profile of ERK1/2, a central component of the receptor/ERK signaling pathway that dictates signal specificity. Our data further support the idea that the chemokine receptor core acts as a plastic scaffold. Thus, the diversity and intensity of inflammatory and noninflammatory responses mediated by chemokine receptors appear to be primarily determined by the initial interaction between the receptor N-terminus and the N-loop of chemokines.  相似文献   

16.
17.
The putative yeast GTPase Nug1, which is associated with several pre-60 S particles in the nucleolus and nucleoplasm, consists of an N-terminal domain, which is found only in eukaryotic orthologues, and middle and C-terminal domains that are conserved throughout eukaryotes, bacteria, and archaea. Here, we analyzed the role of the eukaryote-specific Nug1 N-domain (Nug1-N). We show that the essential Nug1-N is sufficient and necessary for nucle(ol)ar targeting and association with pre-60 S particles. Nug1-N exhibits RNA binding activity and is genetically linked in an allele-specific way to the pre-60 S factors Noc2, Noc3, and Dbp10. In contrast, the middle domain, which exhibits a circularly permuted GTPase fold and an intrinsic GTP hydrolysis activity in vitro, is not essential for cell growth. The conserved Nug1 C-domain, which has a yet uncharacterized fold, is also essential for ribosome biogenesis. Our findings suggest that Nug1 associates with pre-60 S subunits via its essential N-terminal RNA-binding domain and exerts a non-essential regulative role in pre-60 S subunit biogenesis via its central GTPase domain.  相似文献   

18.
SR proteins are essential for the splicing of messenger RNA precursors in vitro, where they also alter splice site selection in a concentration-dependent manner. Although experiments involving overexpression or dominant mutations have confirmed that these proteins can influence RNA processing decisions in vivo, similar results with loss-of-function mutations have been lacking. Now, a system for genetic depletion of the chicken B cell line DT40 has revealed that the SR protein ASF/SF2 (alternative splicing factor/splicing factor 2) is essential for viability in these cells(1). This study opens the way for a complete functional dissection of this protein, and other SR proteins, in vivo.  相似文献   

19.
Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins.  相似文献   

20.
Cdc14-like phosphatases regulate a variety of cell cycle events by dephosphorylating CDK sites. Their cell cycle-dependent changes in localization may be important to carry out distinct functions. Work in budding and fission yeast suggested that Cdc14-like phosphatases are inhibited by nucleolar sequestration. In S. cerevisiae, Cdc14p is released from the nucleolus by the FEAR network and Cdk1, whereas the S. pombe CDC14-like phosphatase Clp1p (also known as Flp1p) is released at mitotic entry by an unknown mechanism. The mitotic exit network (MEN) in S. cerevisiae and its homologous network, the septation initiation network (SIN), in S. pombe act through an unknown mechanism to keep the phosphatase out of the nucleolus in late mitosis. SIN-dependent cytoplasmic maintenance of Clp1p is thought to be essential for the cytokinesis checkpoint, which blocks further rounds of nuclear division until cytokinesis is completed. By targeting Clp1p to the nucleus or the cytoplasm, we demonstrate distinct functions for these pools of Clp1p in chromosome segregation and cytokinesis, respectively. Our results further suggest that the SIN does not keep Clp1p out of the nucleolus by regulating nucleolar affinity, as proposed for S. cerevisiae Cdc14p, but instead, Clp1p may be regulated by nuclear import/export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号