首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

2.
The evolution of acetylcholinesterase (AChE) activity and AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of chickens 2-18 days of age. In ALD as well as in PLD muscles, the AChE-specific activity increased transiently from day 2 to day 4; the activity then decreased more rapidly in PLD muscle. During this period asymmetric AChE forms decreased dramatically in ALD muscle and the globular forms increased. In PLD muscle, the most striking change was the decline in A8 form between days 2 and 18 of development. Denervation performed at day 2 delayed the normal decrease in AChE-specific activity in PLD muscle, whereas little change was observed in ALD muscle. Moreover, A forms in these two muscles were virtually absent 8 days after denervation. Direct electrical stimulation depressed the rise in AChE-specific activity in denervated PLD muscle and prevented the loss of the A forms. Furthermore, the different molecular forms varied according to the stimulus pattern. In ALD muscle, electrical stimulation failed to prevent the effect of denervation. This study emphasizes the differential response of denervated slow and fast muscles to electrical stimulation and stresses the importance of the frequency of stimulation in the regulation of AChE molecular forms in PLD muscle during development.  相似文献   

3.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

4.
5.
6.
Acetylcholinesterase (AChE) molecular forms in denervated rat muscles, as revealed by velocity sedimentation in sucrose gradients, were examined from three aspects: possible differences between fast and slow muscles, response of junctional vs extrajunctional AChE, and early vs late effects of denervation. In the junctional region, the response of the asymmetric AChE forms to denervation is similar in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle: (a) specific activity of the A12 form decreases rapidly but some persists throughout and even increases after a few weeks; (b) an early and transient increase of the A4 AChE form lasting for a few weeks may be due to a block in the synthetic process of the A12 form. In the extrajunctional regions, major differences with regard to AChE regulation exist already between the normal EDL and SOL muscle. The extrajunctional asymmetric AChE forms are absent in the EDL because they became completely repressed during the first month after birth, but they persist in the SOL. Differences remain also after denervation and are, therefore, not directly due to different neural stimulation patterns in both muscles: (a) an early but transient increase of the G4 AChE occurs in the denervated EDL but not in the SOL; (b) no significant extrajunctional activity of the asymmetric AChE forms reappears in the EDL up till 7 wk after denervation. In the SOL, activity of the asymmetric AChE forms is decreased early after denervation but increases thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Fibre bundles or whole muscles from Xenopus laevis, ranging in size from 0.5-60g, were studied. Maximum power output of predominantly fast (sartorius) and slow (adductor magnus) muscles was measured at cycle frequencies between 0.5 and 20Hz, using the work loop technique. Power output was highly dependent on cycle frequency, and in 50-60g adults was maximal at 6 Hz for fast fibres (65 Wkg-1), and 2 Hz for slow fibres (14 Wkg-1). The cycle frequency for maximum power output was dependent on body mass (Mb), and decreased as a function of Mb-0.07 in fast fibres, and Mb-0.23 in slow fibres. The functional significance of these differences is discussed.  相似文献   

8.
A modified automatic freezing apparatus (K. M. Kretzschmar and D. R. Wilkie, 1962, J. Physiol. (London), 202, 66–67) was used for studying light chain phosphorylation during the early phase of contraction of the fast, posterior latissimus dorsi, and slow, anterior latissimus dorsi, muscles of chicken at 37 °C. The frozen muscles were worked up under conditions which avoid artifacts in quantitating the level of light chain phosphorylation in contracting and resting muscles. The posterior latissimus dorsi muscle reached 80% of its maximal isometric tension at 0.1 s of tetanic stimulation. At the same time, light chain phosphorylation increased by 60% of its maximal extent. The peak tension of the posterior muscle at 0.2 s of stimulation was accompanied by maximal light chain phosphorylation. In case of the slow anterior latissimus dorsi muscle, maximal tetanic tension was developed in 2.5 – 5 s and light chain phosphorylation also proceeded at a much slower rate than in the fast posterior muscle. When contralateral posterior latissimus dorsi muscles were stimulated for 0.2 s and one muscle was frozen at the height of tetanus while the other muscle was allowed to relax and frozen 0.4 s after terminating the stimulation, both contracted and relaxed muscles exhibited maximal light chain phosphorylation. However, when the muscle was allowed to relax for 0.8 s before freezing, half of the phosphorylated light chain became dephosphorylated. The resting level of phosphate content of the light chain was restored in both the posterior and anterior muscles during a longer time after relaxation.  相似文献   

9.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.  相似文献   

10.
Abstract: Multiple molecular forms of acetylcholinesterase from electric organ and electric lobe of Torpedo marmorata were examined at various developmental stages by sucrose density sedimentation. Four major forms were characterized by their apparent sedimentation coefficients of 6 S, 11 S, 13 S, and 17 S. Embryonic lobe possessed at early stages predominantly the 11 S form. With maturation the 17 S form became the most abundant. The early embryonic stages of the electric organ were characterized by predominating amounts of 6 S and 11 S forms. With differentiation of the postsynaptic membrane of the developing electrocytes, 13 S and 17 S forms replaced the slower-sedimenting forms. Concomitant with the formation of synaptic contacts, a transient increase in the 13 S form was followed by a dramatic accumulation of rapid-sedimenting 17 S form. The establishment of fully functional synapses was accompanied by an increase in the amount of the hydrophobic 6 S form. At birth, equal amounts of 6 S and 17 S form were found, with the other forms present in only trace amounts. The observed characteristic changes correlated with morphological and physiological events, indicating a close functional relationship between the accumulation of the 17 S form and synapse formation and the accumulation of the 6 S form and onset of function.  相似文献   

11.
Five molecular forms of AChE are present in the slow (ALD) and twitch (PLD) muscles of the chick. These forms have 4 S, 7 S, 11 S, 15 S and 20 S sedimentation coefficient in sucrose gradient. The heaviest forms, the 20 S and 15 S of AChE are absent in uninnervated muscles and present in innervated muscles. In innervated muscles, the 20 S and 15 S AChE are present in both nerve-free segments and end-plates zones. The 20 S and 15 S which are not specifically associated with the end-plate zones in the chick could be considered as a biochemical "marker" of neuromuscular interactions.  相似文献   

12.
Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer’s disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.  相似文献   

13.
Differentiation of slow and fast muscles in chickens   总被引:3,自引:0,他引:3  
1. The development of the characteristic histochemical appearance of the slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) was studied in chickens during embryonic development as well as during regeneration of minced muscle. 2. During embryonic development the activity of the oxidative enzyme succinic dehydrogenase (SDH) is higher in the slow ALD muscle already at 16 days of incubation. At this time the fast PLD has a higher activity of the glycolytic enzyme, phosphorylase. Although the histochemical appearance of the two types of muscle is already different at 16 days, their contractile speeds are still similar. No difference in myosin ATP-ase was found in the two muscles in young embryos but in 20-day old embryos the two muscles became distinctly different when stained for this enzyme. 3. When PLD muscles in hatched chickens redeveloped during regeneration in place of ALD the histochemical characteristics of the regenerated muscle resembled ALD, and when ALD regenerated in place of PLD it resembled PLD. 4. It is concluded that the histochemical characteristics of slow and fast muscles become determined during early development, even before any difference in contractile properties can be detected and that they are determined by the nerve.  相似文献   

14.
Purified acetylcholinesterase (AChE) of the horn fly was characterized to elucidate the enzymological, inhibitory, and molecular properties of the enzyme. Maximum activity of the AChE against the substrate acetylthiocholine (ATCh) occurred when reactions were conducted at 37°C and pH 7.5. Km and Vmax values were (9.2 ± 0.35) × 10?6 M and 239.8 ± 10.8 units/mg, respectively, for ATCh and (1.5 ± 0.07) × 10?5 M and 138.5 ± 5.5 units/mg, respectively, for butyrylthiocholine (BTCh). The activity of AChE decreased when concentrations of ATCh or BTCh were higher than 1 mM. Studies of the interaction of AChE with different inhibitors revealed pl50 values of 8.88 for eserine, 6.90 for BW284C51, and 4.97 for ethopropazine. Bimolecular reaction constants (kis) for the organophosphorus (OP) anticholinesterases were (2.74 ± 0.14) × 106 M?1 min?1 for coroxon, (7.20 ± 0.28) × 105 M?1 min?1 for paraoxon, and (2.33 ± 0.12) × 105 M?1 min?1 for stirofos. Two major forms of native AChE molecules were found on non-denaturing polyacrylamide gel electrophoresis (PAGE) with Triton X-100, corresponding to bands AChE-2 and AChE-4 found on PAGE without Triton X-100. AChE-2 had an estimated molecular weight of 603,000 and was amphiphilic. AChE-4 had a molecular weight of 147,000 and was hydrophilic. Results of PAGE analyses indicated that the purified enzyme had two bands, one of about 123 kDa and the other greater than 320 kDa, prior to disulfide reduction and only one band at about 54 kDa after reduction on SDS-PAGE. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    15.
    16.
    Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type. Slow fibers (frog tonic and rat slow-twitch) exhibited only a ‘slow-type’ of myosin head attachment over the entire activation range, while fast fibers (frog and rat fast-twitch) displayed a ‘slow-type’ of myosin head attachment at low levels of activation, and an up to 30-times faster type at high levels of activation. These observations indicate that there are qualitative differences between the mechanisms of myosin head attachment in slow and fast vertebrate skeletal muscle fibers.  相似文献   

    17.
    The presence of a butyrylcholinesterase (BuChE, EC 3.1.1.8) in the musocal cells of the chicken intestine was demonstrated by histochemical and biochemical methods. The study of its distribution, along the intestine from duodenum to rectum, showed that the jejuno-ileum possesses the highest activity. Sucrose gradient centrifugation revealed, in all intestinal areas, two globular forms with sedimentation coefficients of 4.3 S (G1 form) and 10.8 S (G4 form). The presence of Triton X-100 in the preparations did not modify the sedimentation profiles of these two forms which can be considered as soluble BuChE. The ratio of G1/G4-forms progressively decreases along the intestine from duodenum to rectum indicating a predominance of the G4 form in the areas where the activity is low. Our results are discussed in relation to other studies of globular forms of chicken BuChE.Abbreviations AchE Acetylcholinesterase - BuChe Butyrylcholinesterase - LSS Low-Salt-Soluble - DS Detergent-Soluble - HSS High-Salt-Soluble  相似文献   

    18.
    19.
    The distribution of the molecular forms of acetylcholinesterase in the blood of various animal species was examined. The globular tetrameric form was most frequently observed in serum but mouse serum also contained a globular monomer. Globular monomers (rat) dimers (mouse, dog, rabbit) and tetramers (dog) were found in erythrocytes. Interspecies differences make it difficult to formulate a cohesive theory as to the origin and function of blood-borne enzymes.  相似文献   

    20.
    Summary The intracellular distributions of major muscle proteins, myosin, actin, tropomyosin, -actinin, and desmin, in smooth muscle cells of chicken gizzard at various stages of embryogenesis were investigated by immunofluorescence-labeling of enzyme-dispersed cells cultured up to three hours. These muscle proteins, except some part of myosin, were organized into fibrous structures as soon as synthesis and accumulation of proteins started. As for myosin, a considerable amount of it was dispersed in soluble cytoplasm as well. On the other hand, Ca++-dependent contractility was detected with detergent-extracted myoblasts and glycerinated tissue from embryos older than 7 days. Although the nascent myofibrils bear a resemblance to stress fibers, the former could be distinguished from the latter by their high stability in dispersed, spherical cells. The above findings, therefore, show that the synthesis of contractile proteins is followed by immediate assembly of them into functional myofibrils without undergoing any intermediate structure. Based on these findings, the mechanism of myofibril formation in developing smooth muscle cells is discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号