首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant host-derived proline is proposed to serve as an energy source for rhizobia in the rhizosphere and in symbiotic root nodules. The Bradyrhizobium japonicum proC gene was isolated, and a proC mutant strain that behaved as a strict proline auxotroph in culture was constructed. The proC strain elicited undeveloped nodules on soybeans that lacked nitrogen fixation activity and plant hemoglobin. We conclude that the proC gene is essential for symbiosis and suggest that the mutant does not obtain an exogenous supply of proline in association with soybeans sufficient to satisfy its auxotrophy.  相似文献   

2.
3.
The nitrogen phosphotransferase system (PTSNtr) consists of EINtr, NPr, and EIIANtr. The active phosphate moiety derived from phosphoenolpyruvate is transferred through EINtr and NPr to EIIANtr. Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EINtr and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIANtr) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIANtr in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EINtr with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTSNtr in symbiosis was also observed when related PTSNtr mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTSNtr in addition to the negative role of unphosphorylated EIIANtr.  相似文献   

4.
Unlike other members of coagulase negative staphylococci (CNS), strain warneri has proMCD operon, a homologue of sspABC proteinase operon of S. aureus. The proM and proC encode serine glutamyl endopeptidase and cysteine protease respectively, whereas proD directs homologue of SspC, putative cytoplasmic inhibitor which protects the host bacterium from premature activation of SspB. We determined whole nucleotide sequence of proMCD operon of S. warneri M, succeeded in expression of these genes, and investigated their functions by gene inactivation and complementation experiments. In gelatin zymography of the culture supernatant, a 20-kDa band corresponding to PROC cysteine protease was detected. By Western blotting, PROD was also confirmed in the cytoplasmic protein fraction. PROC and PROD showed significant similarity to SspB and SspC of S. aureus (73% and 58%, respectively). Inactivation mutants of proMCD, proCD and proD genes were established, separately. In the proMCD mutant, degradation/processing of extracellular proteins was drastically reduced, suggesting that PROM was responsible for the cleavage of extracellular proteins. By the proD mutation, the growth profile was not affected, and secretion of PROC was retained. Extracellular protein profiles of the proCD and proD mutants were not so different each other, but autolysin profiles were slightly dissimilar, around 39–48 kDa and 20 kDa bands in zymogram. Experiments in buffer systems showed that autolysis was significantly diminished in proMCD mutant, and was promoted by addition of purified PROM. The proC gene was cloned into a multicopy plasmid, and introduced into the proMCD mutant. Compared with the wild type, autolysis of the proC-complemented strain was definitely enhanced by addition of purified PROM. These results suggested that PROM and PROC affected the coccal autolysis, through processing of the autolysin.  相似文献   

5.
A new genetic technique for constructing mutants of Methanosarcina acetivorans C2A by using hpt as a counterselectable marker was developed. Mutants with lesions in the hpt gene, encoding hypoxanthine phosphoribosyltransferase, were shown to be >35-fold more resistant to the toxic base analog 8-aza-2,6-diaminopurine (8ADP) than was the wild type. Reintroduction of the hpt gene into a Δhpt host restored 8ADP sensitivity and provided the basis for a two-step strategy involving plasmid integration and excision for recombination of mutant alleles onto the M. acetivorans chromosome. We have designated this method markerless exchange because, although selectable markers are used during the process, they are removed in the final mutants. Thus, the method can be repeated many times in the same cell line. The method was validated by construction of ΔproC Δhpt mutants, which were recovered at a frequency of 22%. Additionally, a Methanosarcina-Escherichia shuttle vector, encoding the Escherichia coli proC gene as a new selectable marker, was constructed for use in proC hosts. Finally, the markerless exchange method was used to recombine a series of uidA reporter gene fusions into the M. acetivorans proC locus. In vitro assay of β-glucuronidase activity in extracts of these recombinants demonstrated, for the first time, the utility of uidA as a reporter gene in Methanosarcina. A >5,000-fold range of promoter activities could be measured by using uidA: the methyl-coenzyme M reductase operon fusion displayed ~300-fold-higher activity than did the serC gene fusion, which in turn had 16-fold-higher activity than did a fusion to the unknown orf2 gene.  相似文献   

6.
PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates.  相似文献   

7.
The tricarboxylic acid (TCA) cycle plays an important role in generating the energy required by bacteroids to fix atmospheric nitrogen. Citrate synthase is the first enzyme that controls the entry of carbon into the TCA cycle. We cloned and determined the nucleotide sequence of the gltA gene that encodes citrate synthase in Sinorhizobium fredii USDA257, a symbiont of soybeans (Glycine max [L.] Merr.) and several other legumes. The deduced citrate synthase protein has a molecular weight of 48,198 and exhibits sequence similarity to citrate synthases from several bacterial species, including Sinorhizobium meliloti and Rhizobium tropici. Southern blot analysis revealed that the fast-growing S. fredii strains and Rhizobium sp. strain NGR234 contained a single copy of the gene located in the bacterial chromosome. S. fredii USDA257 gltA mutant HBK-CS1, which had no detectable citrate synthase activity, had diminished nodulation capacity and produced ineffective nodules on soybean. Light and electron microscopy observations revealed that the nodules initiated by HBK-CS1 contained very few bacteroids. The infected cells contained large vacuoles and prominent starch grains. Within the vacuoles, membrane structures that appeared to be reminiscent of disintegrating bacteroids were detected. The citrate synthase mutant had altered cell surface characteristics and produced three times more exopolysaccarides than the wild type produced. A plasmid carrying the USDA257 gltA gene, when introduced into HBK-CS1, was able to restore all of the defects mentioned above. Our results demonstrate that a functional citrate synthase gene of S. fredii USDA257 is essential for efficient soybean nodulation and nitrogen fixation.  相似文献   

8.
Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild-type strain, their rhizosphere counts were reduced more than 50% (P ≤ 0.01) relative to the wild type. These results suggest that stachydrine catabolism contributes to root colonization. DNA sequence analysis identified the mutated locus in S11 as putA, and the luxAB fusion in that gene was induced by proline as well as stachydrine. DNA that restored the capacity of mutant S10 to catabolize stachydrine contained a new open reading frame, stcD. All data are consistent with the concept that stcD codes for an enzyme that produces proline by demethylation of N-methylproline, a degradation product of stachydrine.  相似文献   

9.
Xanthomonas campestris pv. glycines is the causal agent of bacterial pustule disease of soybeans. The objective of this work was to construct a nonpathogenic mutant derived from the pathogenic wild-type strain YR32 and to evaluate its effectiveness in preventing growth of its parent on the soybean phyllosphere. A mini-Tn5-derived transposon was used to generate nonpathogenic mutants. Southern hybridization and pulsed-field gel electrophoresis confirmed the presence of a single transposon in each of the nonpathogenic mutants. One of the nonpathogenic mutants, M715, failed to induce a hypersensitive response in tomato leaves. An ice nucleation gene (inaZ) carried in pJL1703 was introduced into strain YR32 as a reporter gene to demonstrate that the presence of M715 could reduce colonization of the soybean phyllosphere by YR32. de Wit serial replacement analysis showed that M715 competed equally with its wild-type parental strain, YR32. Epiphytic fitness analysis of YR32 in the greenhouse indicated that the population dynamics of strains YR32, YR32(pJL1703), and M715 were similar, although the density of the mutant was slightly less than that of its parent. The M715 mutant was able to survive for 16 days after inoculation on soybean leaves and maintained population densities of approximately 104 to 105 cells g (fresh weight) of leaf−1. Therefore, M715 shows promise as an effective biocontrol agent for bacterial pustule disease in soybeans.  相似文献   

10.
An oxygen sensitive mutant of Azorhizobium caulinodans strain IRBG 46 was isolated by NTG mutagenesis. It was defective in N2 fixation under 3% O2 level, while under 1% O2 it was almost as active as the parent strain IRBG 46. The mutant was also found to be a slow grower with reduced respiratory activity, low azide tolerance and no catalase activity. However, it did not differ from its parent strain with respect to nitrate respiration. Under symbiotic condition the mutant formed smaller, light green nodules as compared to bigger, dark green nodules formed by the wild type strain. The mutant was also defective in N2 fixation under symbiotic condition. Complementation analysis showed that the mutation might be in either fixL or fixJ gene which are involved in O2 regulation of nif/fix gene expression. A possible role of all these factors in conferring a highly O2 tolerant nitrogen fixing system in the organism, has been discussed.  相似文献   

11.
Rates of respiratory CO2 loss and nitrogenase activities of H2 uptake-negative mutant strains and H2 uptake-positive revertant strains of Rhizobium japonicum have been investigated. Two-dimensional gel protein patterns of bacteroids formed by inoculation of soybeans (Glycine max L.) with these two strains show that they are closely related and revealed only one obvious difference between them. On the basis of molecular weight standards, it was concluded that the missing protein spot in the H2 uptake-negative mutant strain could be caused by a failure of the mutant to synthesize hydrogenase. Nodules formed by the H2 uptake-negative mutant strain evolved respiratory CO2 at a rate of about 10% higher than that of nodules formed by the H2 uptake-positive revertant strain. During short-term experiments employed, rates of both C2H2 reduction and 15N2 fixation varied considerably among replicate samples and no statistically significant differences between mutant and revertant strains were observed. It was observed that increasing the partial pressure of O2 over nodules significantly decreased the proportion of nitrogenase electrons allocated to H+.  相似文献   

12.
Nodulin gene expression was analyzed in effective and ineffective root nodules of alfalfa (Medicago sativa L. cv Iroquois) elicited by three different Rhizobium meliloti mutants: an exoB mutant having defective acidic exopolysaccharide that does not fluoresce on plates containing the fluorescent brightener Calcofluor; fix21, a spontaneous mutant that has defective lipopolysaccharide and is Calcofluor bright; and a Rhizobium mutant resulting from a Tn5 insertion in the nifH gene of the nif operon. The ineffective nodules elicited by these various mutant rhizobia are blocked at different stages of nodule development and have unique phenotypes. A distinctive pattern of nodulin gene expression as determined by in vitro translations of total nodule RNA characterizes each nodule phenotype. Seventeen nodulins are found in effective nodules including five leghemoglobins. Only one nodulin gene is expressed in the bacteria-free nodules elicited by the exoB mutant. Other nodulin genes (leghemoglobin and nine others) are expressed in fix21-induced nodules. The genes for nodule-enhanced glutamine synthetase as well as for all the other nodulins are expressed in nodules induced by the nifH mutant. The expression of genes for the nodulins, including leghemoglobin, is independent of the nitrogen-fixing ability of the nodule and appears to correlate with the differentiation of densely cytoplasmic host cells in the nodule and, to some extent, with bacterial release from infection threads.  相似文献   

13.
Transposon Tn5 was used to mutate Bradyrhizobium japonicum USDA 61N. From over 5000 clones containing Tn5, 12 were selected and purified using a chemical reaction to identify oxidase-deficient clones. Four classes of mutants were identified based on the alterations in cytochromes. Most of the mutants had alterations in more than one cytochrome. Southern hybridization analysis of restricted genomic DNA of a representative strain of each class demonstrated that each mutant had a single Tn5 insert. Thus a single Tn5 insert produced pleiotropic effects on cytochromes. One class, which was totally deficient in cytochromes aa3 and c, produced ineffective nodules on soybeans. Most of the strains representing the other classes produced effective nodules but exceptions were observed in each class. Bacteroids of the wild-type strain contained cytochrome aa3. Bacteroids from one class of mutants were totally devoid of cytochrome aa3. Several of these strains produced effective symbioses indicating that cytochrome aa3 is not required for an effective symbiosis in this DNA homology group II strain which normally has this terminal oxidase in bacteroids.  相似文献   

14.
An assessment was made of the evolutionary relationships of soybean nodulating bacteria associated with legumes native to eastern Canada to identify potential new sources of soybean inoculant strains.Short season soybeans were used to selectively trap bacteria from root zone soils of four native legume species. Screening of more than 800 bacterial isolates from soybean root nodules by analysis of recA gene sequences followed by analyses of selected genotypes using six core and two symbiosis (nodC and nifH) gene sequences permitted identification of diverse taxa that included eight novel and four named Bradyrhizobium species as well as lineages attributed to the genera Afipia and Tardiphaga.Plant tests showed that symbionts related to four named species as well as a novel Bradyrhizobium lineage were highly efficient with regard to nitrogen fixation on soybeans relative to an inoculant strain.A new symbiovar (sv. septentrionalis) is proposed based on a group of four novel Bradyrhizobium spp. that possess distinctive nodC and nifH gene sequences and symbiotic characteristics.Evidence is provided for horizontal transfer of sv. septentrionalis symbiosis genes between novel Bradyrhizobium spp., a process that rendered recipient bacteria ineffective on soybeans.Diverse lineages of non-symbiotic and symbiotic Bradyrhizobium spp. co-occured within monophyletic clusters in a phylogenetic tree of concatenated core genes, suggesting that loss and/or gain of symbiosis genes has occurred in the evolutionary history of the bacterial genus.Our data suggest that symbiont populations associated with legumes native to eastern Canada harbour elite strains of Bradyrhizobium for soybean inoculation.  相似文献   

15.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant γ-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.  相似文献   

16.
The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.  相似文献   

17.
A mutant of Escherichia coli strain K12S, neaR301, resistant to the antibiotic neamine was found to have an altered 30 S ribosomal protein S17. The modification involves a change in the electrophoretic mobility of this protein. S17 proteins wore purified from the mutant and the parental strain, respectively, and the amino acid compositions of all tryptic peptides were compared. The results show that the mutational alteration involves a replacement of histidine by proline in peptide T8 from mutant neaR301. The amino acid replacement is located at position 30 of the S17 protein chain. We conclude, therefore, that the mutation neaR301 affects the structural gene for protein S17 (rps Q).  相似文献   

18.
The aim of this study is to evaluate the contribution of bacteroidproline catabolism as an adaptation to drought stress in soybeanplants. To accomplish this, soybeans (Glycine max L. Merr.)were inoculated with either a parental strain of Bradyrhizobiumjaponicum which was able to catabolize proline, or a mutantstrain unable to catabolize proline. A large strain-dependentdifference in nodule number and size was observed. In orderto separate inoculant-dependent effects on nodulation from effectson bacteroid proline catabolism, plants inoculated with eachstrain were only compared to other plants inoculated with thesame strain, thus removing the observed inoculant-dependentdifferences in nodulation as a bar to interpretation of theresults. This experimental design allowed a comparison of thedrought penalty on yield for plants with parental bacteroidsand for plants with mutant bacteroids. The two results werethen compared to each other in order to evaluate the impactof the ability of bacteroids to catabolize proline on the responseto drought stress. When water stress was mild, soybean plants inoculated with bacteriaunable to catabolize proline suffered twice the percentage decreasein seed yield as did plants inoculated with bacteria able tocatabolize proline. However, when stress was severe there wasno significant effect of the ability of bacteroids to catabolizeproline on drought imposed decrease in seed yield. These resultssuggest that increasing the oxidative flux of proline in bacteroidsmight provide an agronomically significant yield advantage whenstress is modest, but that severe drought stress would probablyoverwhelm this yield benefit. Key words: N2-fixation, proline dehydrogenase, drought stress  相似文献   

19.
20.
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号