首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prehydrolysis liquor (PHL) of the kraft‐based dissolving pulp production process contains various amounts of hemicelluloses that can be utilized in the production of value‐added products. In this work, a new process was proposed for removing the inhibitors of PHL via employing a flocculation concept to facilitate the utilization of hemicelluloses. Lignin, lignocelluloses/cationic polymer complexes, and possibly ethanol are the main products of this process. This process has been experimentally evaluated with an industrially produced PHL and cationic polymers. The results showed that 16% of lignin, 19% of acetic acid, 43% of furfural, and insignificant amount of sugars were removed from PHL via pretreating PHL with acid and lime at pH 7. Furthermore, by adding 0.4–0.5 mg g?1 polydiallyldimethylammonium chloride (PDADMAC) or chitosan to the pretreated PHL, 12–14% acetic acid, 40–50% furfural, 5–6% monomeric sugars, and 25% oligomeric sugars were removed from the PHL. The complexes made from these components may be applied as organic fillers in various industries. Alternatively, by adding 1.2 or 1.4 mg g?1 PDADMAC or chitosan to the pretreated PHL, 30 or 35% of lignin was removed, respectively, which induced complexes that could be used as a fuel source. The composition of the complexes formed was also determined in this work. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 998–1004, 2012  相似文献   

2.

Background

In the kraft-based dissolving pulp production process, pre-hydrolysis liquor (PHL) is produced, which contains hemicelluloses, lignin, furfural and acetic acid. PHL is currently burned in the recovery boiler of the kraft pulping process, but it can be utilized for the generation of high-valued products, such as xylitol and xylanase, via fermentation processes. However, some PHL constituents, e.g., furfural and lignin, are contaminants for fermentation processes and they must be eliminated for production of value-added products.

Results

In this work, a process is introduced for removing contaminants of PHL. Ca(OH)2 treatment is the first step of this process, which removed 41.2% of lignin and negligible amount of sugars. In this step, a notable increase in the concentration of acetic acid was achieved (ranging from 6.2 to 11.7 g/L). In the second step, the implementation of adsorption using activated carbon (AC) at 1 wt% dosage led to additional 32% lignin and 5.9% xylosugar removals. In addition, laccase assisted activated carbon treatment led to further removal of lignin via accelerating lignin polymerization and adsorption on AC (i.e., removal from PHL). Overall, 90.7% of lignin, 100% of furfural, 5.7% of xylose, and 12% of xylan were removed from PHL, while the concentration of acetic acid became twofolds in the PHL.

Conclusions

This study reports an attractive process for purifying sugars and acetic acid of PHL. This process may be implemented for producing sugar-based value-added products from PHL. It also discusses the mechanism of Ca(OH)2 treatment, AC adsorption and laccase assisted activated carbon treatment for lignin removal.
  相似文献   

3.
Liu Z  Fatehi P  Sadeghi S  Ni Y 《Bioresource technology》2011,102(20):9613-9618
Hemicelluloses in industrially produced pre-hydrolysis liquor (PHL) were precipitated with ethanol. These PHL-derived hemicelluloses (PHL-EH) and a commercial, pure birch wood xylan sample (powder form) (BWX) were bleached using chlorine dioxide (D(0) and D(1)) and hydrogen peroxide (Ep) in the D(0)EpD(1) sequence, and the chemical compositions, molecular weights and charge densities of the treated samples were assessed. When applied to high-yield pulp (HYP) at 50 mg/g, 26 and 20 mg/g of the bleached PHL-EH and BWX, respectively, were adsorbed without significantly affecting paper properties. These results suggest that semi-bleached hemicelluloses could be used to increase the basis weight of paper products. Furthermore, an integrated process was proposed that converts the kraft-based dissolving pulp production process into a biorefinery unit with dissolving pulp, bleached hemicelluloses and lignin as main products.  相似文献   

4.
Shi H  Fatehi P  Xiao H  Ni Y 《Bioresource technology》2011,102(8):5177-5182
The presence of lignin impairs the utilization of the hemicelluloses dissolved in the pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process. In this paper, a novel process was developed by combining the acidification and poly ethylene oxide (PEO) flocculation concepts to improve the lignin removal. The results showed that the lignin removal was improved by the addition of PEO to the acidified PHL, particularly at a low pH of 1.5. The main mechanisms involved are the lignin/PEO complex formation and the bridging of the formed complexes. This hypothesis was supported by the turbidity, FTIR and particle size measurements. Interestingly, the hemicelluloses removal from the acidification/PEO flocculation was marginal, which would be beneficial for the down-stream ethanol production from the PHL. Additionally, a process flow diagram was proposed that incorporates this new concept into the existing configuration of kraft-based dissolving pulp production process.  相似文献   

5.
The adsorption of a strong, highly charged cationic polyelectrolyte to a kraft lignin thin film was investigated as a function of the adsorbing solution conditions using the quartz crystal microbalance. The polyelectrolyte, PDADMAC, with a molecular weight of 100 kDa and one cationic charge group per monomer, was adsorbed to the anionically charged lignin film in the pH range 3.5-9.5 in electrolyte solution of 0.1 to 100 mM NaCl. At low pH, the adsorbed amount of PDADMAC was minimal, however, this increased as a function of increasing pH. Indeed, the surface excess increased significantly at about pH 8.5, where ionization of the phenolic groups on the lignin macromolecule may be expected. Furthermore, at this elevated pH, the adsorbed amount of PDADMAC decreased as the ionic strength of the solution increased above 1 mM. This is due to the competitive adsorption of counterions to the lignin surface and indicates that the adsorption of PDADMAC to lignin is of a pure electrosorption nature.  相似文献   

6.
The spent liquor (SL) of neutral sulfite semi‐chemical (NSSC) pulping process contains about 8 wt% lignocelluloses that can be extracted and used in the production of value‐added materials. In this work, a flocculation process followed by centrifugation was considered for isolating lignosulfonate and hemicelluloses from SL. It was observed that, by adding 20 mg/g of polydiallyldimethylammuniom chloride (PDADMAC) with 100,000–200,000 g/mol molecular weight to SL, 45% of lignosulfonate and 39% of hemicelluloses were removed at 30°C. The lignocellulose removal was more efficient for the dual flocculation system of low and high molecular weights PDADMAC than for individual PDADMAC systems. Overall, 49% of lignosulfonate, 47% of hemicelluloses and 97% of turbidity were removed from SL from the dual system when 10 mg/g low molecular weight PDADMAC and 10 mg/g high molecular weight PDADMAC were added to the SL at 30°C, subsequently. The thermogravimetric analysis (TGA) of generated flocs showed that all samples had similar thermal behaviour and 13–16 wt% of flocs remained as ash after burning at 700°C in nitrogen. As the flocs are made of lignocellulosic materials and they are thermally stable, they could be used as fillers in paper board production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:686–691, 2016  相似文献   

7.
Method of the removal of lignin and reuse of cellulases for a continuous saccharification of lignocelluloses were investigated. Only lignin could be separated from hydrolysates by differences in the settling velocity; it was removed from the saccharification process by flocculation with chitosan without loss of cellulases. The ultra-filtration membrane PM10 (Amicon) could be used for recovery of cellulases, but the membrane UH-1 (Toyo Roshi) was better for this purpose, because no cellulases leaked from the membrane, and the amount of cellulase adsorbed to the membrane was less. The cellulases were inactivated by vigorous agitation of the solution in an ultra-filtration device. The loss of cellulase activity by such agitation increased with agitation time, but could be controlled by recovery at a low speed of agitation, so the cellulases could be reused.  相似文献   

8.
The effects of the soft-rot fungus Trichoderma viride Pers., on the thermal behavior of lime wood (Tillia cordata Mill.) were investigated. The lime wood pieces were inoculated with the fungus over a 12-week period. At pre-established time intervals two samples were withdrawn from the medium and analyzed by thermogravimetry and differential calorimetry, and the results were correlated with mass loss. Fungal activity was indicated by continuous decrease of sample mass.Modification of the wood because of the presence of the fungus was evidenced by structural changes that affected its thermal properties, both in respect to the hydrophilicity of the wood (evidenced mainly in desorption process) and in its decomposition behavior. The shape of DTG curves depends on the exposure time of wood to the action of microorganisms. The peak temperature assigned to the decomposition of wood components increases, while the global kinetic parameters for the main peak decrease with increasing exposure time of the wood to the attack by microorganisms.The increased characteristic temperatures of water desorption and cellulose decomposition processes and lower thermal stability could be explained by newly formed structures, mainly the oxidized ones.  相似文献   

9.
In this study the weathering behavior of lime wood (Tillia cordata Mill.) has been examined using FT-IR and 2D IR correlation spectroscopy, which evidenced chemical changes induced by exposure to weathering conditions. It was showed that lignin is most sensitive component to the photodegradation processes as indicated by considerable decreases in the intensities of the characteristic aromatic lignin band at 1505cm(-1) and other associated bands. By 2D correlation spectroscopy has been demonstrated that the moment of CO from carboxyl and acetyl groups in hemicelluloses is changing first, followed by the CC of aromatic skeletal, CO in non-conjugated ketones, carboxyl groups and lactones, absorbed O-H and conjugated C-O groups in quinones. The carbonyl formation corresponded well with lignin degradation, indicating a close relationship between them. Comparing the rate of carbonyl formation and lignin decay clearly showed that the former is remarkably higher than the latter, indicating the formation of carbonyl bands at 1738cm(-1) probably resulted from not only lignin oxidation but also from reactions occurring in other components of the wood. Quinine formation is combined with the decay of aromatic structures and the formation of conjugated carbonyl groups.  相似文献   

10.
鸡枞菌转录组分析揭示其对木质纤维素的降解功能   总被引:2,自引:0,他引:2  
【目的】探究鸡枞菌是否能降解木质纤维素成分,并理解其与共生白蚁之间的共生关系。【方法】本研究是应用新一代高通量测序技术454 GS FLX Titanium对鸡枞菌的转录组进行测序,挖掘鸡枞菌中能参与降解纤维素和木质素等成分的多样性酶系。【结果】八分之一的RUN测序总共得到了82386条表达序列标签,去除引物和载体等序列后,剩余的54410条序列被拼接成3301条contigs以及3193条singletons。根据序列相似性,将这些unigenes与三大蛋白数据库(Nr数据库、SwissProt数据库、CDD数据库)中的蛋白序列进行BLAST比较,发现有2681条基因与其他生物的已知基因有不同程度的相似性。在鸡枞菌的这些转录产物中,有33条编码可能参与降解纤维素或半纤维素的酶基因,其中包括5种纤维素酶以及28种水解半纤维素、淀粉或几丁质等物质的酶类。更重要的是,还发现了4种漆酶以及一种芳基乙醇氧化酶基因,这些都是能有效降解木质素的酶类。这些结果揭示了鸡枞菌中存在漆酶并可能有效降解植物残渣中的酚化合物。【结论】这些基因的发现说明了鸡枞菌能降解木质素,并能与共生白蚁分泌的纤维素酶协同作用有效降解纤维素。  相似文献   

11.
In this work, we found that Tween 20 treatment (0-8 mM) contributed to the cell wall collapse of most samples except for those with high lignin contents and high crystallinity. Cell wall collapse contributed to the formation of 10- to 50-nm pores and not only increased the monolayer saturation amount of adsorbed cellulase about 3-3.6 times but also increased the cellulase adsorption rate (D(e)/r(2)) about 160-880 times. Moreover, cellulose conversion at 72 h was also increased 8.7-21.5% by Tween 20 treatment. On the other hand, the adsorption of Tween 20 on Avicel (microcrystalline cellulose) hindered the cellulase reaction (adsorption and saccharification). The effect of Tween 20 treatment on the crystalline part was insignificant for both lignocelluloses and Avicel. It was found that some degree of pretreatment (e.g. lignin removal) that enhances Tween 20 diffusion into samples is necessary to obtain the structural effects of Tween 20.  相似文献   

12.
Specifically radiolabeled [C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [C]phenylalanine, [C]tyrosine, and [C]cinnamic acid as precursors. Specifically radiolabeled [C-polysaccharide]lignocelluloses were prepared by using [C]glucose as precursor. The rates of microbial degradation varied among [C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. To determine the causes of these differential rates, [C-lignin]lignocelluloses were thoroughly characterized for the distribution of radioactivity in nonlignin contaminants and within the lignin macromolecule. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [C]phenylalanine and [C]tyrosine were found associated with protein, although very little (3%) radioactivity from [C]cinnamic acid was associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to CO(2); during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized.  相似文献   

13.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.  相似文献   

14.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
Microbial decomposition of lignocellulose in soil was studied using radioisotope techniques. Natural lignocelluloses containing C in either their lignin or cellulose (glucan) components were prepared by feeding plants l-[U-C]phenylalanine or d-[U-C]glucose, respectively, through their cut stems. Detailed chemical and chromatographic characterization of labeled lignocelluloses from three hardwood and three softwood species showed that those labeled by the [C]glucose incorporation method contained specifically labeled cellulosic components, whereas those labeled by the [C]phenylalanine incorporation method contained specifically labeled lignin components. Microbial degradation of these differentially labeled lignocelluloses was followed by monitoring CO(2) evolution from selected soil samples incubated with known amounts of radiolabeled lignocelluloses. The lignin components of the six woods were shown to be decomposed in soil 4 to 10 times more slowly than their cellulosic components. These rates of mineralization were comparable to the generalized patterns previously reported in the literature. The present technique, however, was thought to be simpler, more sensitive, and less prone to interference than methods previously available.  相似文献   

16.
Summary A pot experiment was carried out using a soil high in aluminium to investigate the relationship between the dry matter responses of subterranean clover to lime at two soil moisture levels. Subterranean clover, which is reputed to be tolerant to high aluminium levels in the soil, showed an increase in the dry weight of plant tops of 50% when lime was added on the low moisture treatments. By contrast the response on the high moisture treatment was only 5.6%.  相似文献   

17.
Hydrophobic properties of lignin-carbohydrate complexes (LCC) isolated from Pinus densiflora Sieb. et Zucc. have been analysed by hydrophobic-interaction chromatography on Phenyl- and Octyl-Sepharose CL-4B gels. The ability of LCC to be adsorbed by these hydrophobic gels was exclusively dependent on their lignin content. Materials adsorbed on Octyl-Sepharose were desorbed with a lower concentration of 2-ethoxyethanol than those adsorbed on Phenyl-Sepharose. In the adsorption of LCC by Phenyl-Sepharose, ππ interactions between the aromatic ligands and the benzene skeletons of lignin play an important role, whereas hydrophobic interaction is the exclusive driving-force for adsorption in the case of Octyl-Sepharose.  相似文献   

18.
Xu J  Cheng JJ 《Bioresource technology》2011,102(4):3861-3868
Sodium hydroxide (NaOH) and lime (Ca(OH)2) were innovatively used together in this study to improve the cost-effectiveness of alkaline pretreatment of switchgrass at ambient temperature. Based on the sugar production in enzymatic hydrolysis, the best pretreatment conditions were determined as: residence time of 6 h, NaOH loading of 0.10 g/g raw biomass, NaOH addition at the beginning, Ca(OH)2 loading of 0.02 g/g raw biomass, and biomass wash intensity of 100 ml water/g raw biomass, at which the glucose and xylose yields were respectively 59.4% and 57.3% of the theoretical yields. The sugar yield of the biomass pretreated using the combination of 0.10 g NaOH/g raw biomass and 0.02 g Ca(OH)2/g raw biomass was found comparable with that of the biomass pretreated using 0.20 g NaOH/g raw biomass at the same conditions, while the chemical expense was remarkably reduced due to the low cost of lime and the reduced loading of NaOH.  相似文献   

19.
Rao AG  Bapat AN 《Bioresource technology》2006,97(18):2311-2320
Pilot studies were carried out for the treatment of pre-hydrolysate liquor (PHL), a high strength effluent (COD: 70,000-80,000 mg/l) emanating from a rayon grade pulp mill using up-flow anaerobic sludge blanket reactor (UASB). Substrate inhibition was avoided with optimum COD feed of around 25,000 mg/l. This was achieved by diluting the PHL with a low strength effluent stream known as alkali back wash (ABW) available in the plant and also by partially recycling the reactor liquid outlet. An optimum organic loading rate (OLR) of 10 could be achieved with a COD reduction of 70-75%, a BOD reduction of 85-90% and a methane yield of 0.31-0.33 m3/kg of COD reduced. The pilot scale studies also revealed that addition of milk of lime (MOL) was essential for neutralization and buffering and DAP and urea to supplement the nutrients in the PHL. Based on the pilot studies, a full-scale high rate biomethanation plant was designed and erected for treating the PHL, which after some modification showed similar performance for COD, BOD reduction and methane yield.  相似文献   

20.
H. Ssali 《Plant and Soil》1981,62(1):53-63
Summary The effect of level of CaCO3, inoculation and lime pelleting on the nodulation, dry matter yield and % N content of common bean plants (Phaseolus vulgaris) grown in five acid soils was investigated in a greenhouse study. The soils represented a range in pH from 3.9 to 5.1, in exchangeable Al from 0.0 to 4 meq/100 gm, in exchangeable Mn from 0.35 to 2.32 me/100 gm, and in %C from 0.69 to 5.60.Nodule weight decreased with increasing %C and for the soil with highest %C (5.60) no nodules were observed. In soils with low organic matter and low exchangeable Al and Mn, inoculation increased nodule weight, dry matter yield and %N especially at the lowest pH level. Where the seeds were not inoculated, nodule weight and dry matter yield increased with soil pH. No such increases were observed where the seeds were inoculated. There was no apparent advantage in lime pelleting in such soils.In soils with low organic matter content and with substantial amounts of Al and/or Mn, liming increased nodule weight and dry matter yield, and decreased exchangeable Al and/or Mn. Lime pelleting was superior to mere inoculation in increasing nodule weight particularly at low lime rates.In soils with relatively high organic matter content, nodulation was very low or none at all. Low lime rates had little effect on exchangeable Al and Ca and dry matter yield. Higher lime rates, however, decreased exchangeable Al and dry matter yield but increased exchangeable Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号