首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objects of the study were single-compartment mathematical models corresponding to a fragment of the dendrite of a cerebellar Purkinje neuron containing the mitochondria (model 1) or a cistern of the endoplasmic reticulum, ER, (model 2) as the calcium stores. We investigated the dependence of the intracellular Ca2+ dynamics on geometrical sizes of calcium exchanging parts of the intracellular space and the difference between the kinetic characteristics of storing in two types of stores occupying different portions of the compartment volume. The plasma membrane of the compartment bore the ion channels, particularly those conducting excitatory synaptic current, and the calcium pump typical of this neuron type. The model equations took into account Ca2+ exchange between the cytosol, extracellular medium, organelle stores, non-organelle endogenous buffers, and an exogenous buffer (fluorescent dye), and also the diffusion of Са2+ into adjacent regions of the dendrite. In model 1, the mitochondria exchanged Са2+ with the cytosol via the uniporter and sodium/calcium exchanger; mitochondrial processes, such as the tricarboxylic acid cycle and aerobic cellular respiration, were also taken into account. In model 2, the ER membrane contained the calcium pump, channels of passive leak, and channels of calcium-induced and inositol-3-phosphate-dependent release of Са2+. Increases in the portion of the stores in the total volume of the compartment from 1 to 36% led to a proportional increase in the peak values of the cytosolic calcium concentration ([Ca2+] i ); the concentration of Са2+ in the mitochondria ([Ca2+]mit) or ER ([Ca2+]ER) increased correspondingly. During generation of bell-shaped cytosolic calcium signals of equal intensity and duration, the ER (due to a greater rate of storing, as compared with that in the mitochondria) was able to uptake several times more Са2+ (four times at 36% filling of the volume by the organelles). It is suggested that the revealed different kinetic characteristics of Са2+ storing by different organelles are determined by the rates of binding to transport molecules present in the store membrane and, therefore, are defined by concentrations (surface densities) of these molecules and their saturation at certain levels of [Ca2+]i. It has been shown that the occupancy of the intracellular volume by organelle stores of any type is a structural factor, which is able to essentially modulate the values of Ca2+ concentration.  相似文献   

2.
The dependence of intracellular calcium dynamics on geometrical size relations between calcium-exchanging parts of the intracellular space was studied in mathematical models corresponding to a thin fragment of the Purkinje neuron spiny dendrite. The plasma membrane contained ion channels typical of this cell type, including channels that conduct an excitatory synaptic current, and ion pumps. The model equations took into account calcium exchange between the cytosol, extracellular medium, intracellular store (a cistern of the endoplasmic reticulum, ER), endogenous calcium buffers, and an exogenous buffer (fluorescent dye used in the experiments). The ER membrane contained the calcium pump and channels of calcium-dependent and inositol-3-phosphate-dependent calcium release, as well as leakage channels. With the compartment size fixed, the ER cistern diameter was varied so that the proportion of the organelle in the total volume changed from 1 to 36%. Under these conditions, identical synaptic excitation caused similar electrical reactions (calcium spikes) but different concentration responses. Equal increments in the ER diameter led to unequal, more pronounced at thicker diameters, increments of the peak cytosolic concentrations of Са2+ ([Ca2+] i ) and of a Са2+-fluorescent dye complex [CaD], as well as those of the Са2+ concentration in the dendrite ER (characterized by a shift from the basal level, Δ[Ca2+]ER). The changes in [Ca2+] i and [CaD] followed more adequately those in the volume of the organelle-free cytosol, while Δ[Ca2+]ER changes were more similar to those in the ER membrane area. Therefore, the relative occupancy of the intracellular volume by organellar calcium stores and their sizes in a dendritic compartment are important structural factors that essentially modulate the calcium dynamics, and this structural dependence can be adequately reflected in the experiments using fluorophores. Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 19–31, January–February, 2009.  相似文献   

3.
Dependences of intracellular calcium signals on the concentrations of endogenous buffers (slow, parvalbumin, and fast, calmodulin) and a calcium-sensitive fluorophore (Fura-4F) were investigated on mathematical models of compartments of the reconstructed dendrite of a cerebellum Purkinje neuron. A Ca2+-storing cistern of the endoplasmic reticulum (ER) was present in the dendrite. Calcium signals developed when the neuron generated responses to single synaptic excitation or intrinsic non-periodical impulse activity. The dynamics of the buffer binding capacity were also studied; this capacity was characterized by the ratio of concentrations of bound and free calcium or concentration increments of the latter. The plasma membrane of the dendrite possessed ion channels (including those of synaptic currents) and the calcium pump characteristic of the mentioned neuron. Model equations took into account Ca2+ exchange between the cytosol, buffers, ER, and extracellular medium, as well as diffusion processes. The ER membrane contained the calcium pump, leakage channels, and channels of calcium-induced release and inositol-3-phosphate-dependent releases of Ca2+. The ER cistern occupied 1 to 36% of the intracellular volume. Upon different occupancies of the dendrite by the organelle store, an increase in the concentration of the slow buffer insignificantly decreased the cytosolic Ca2+ transients with no effect on their shape. The fast buffer and the dye with similar kinetic properties caused slowing down of the rising phase of Ca2+ transients, decrease in the early component, and increase in the late component of the latter. In the case of nonperiodical and asynchronous intrinsic oscillations of the membrane potential typical of asymmetrical active dendrites, the slow buffer, like the ER store, bound more Ca2+ in compartments of compatible sizes and fillings by the organelles belonging to those metrically asymmetrical branches, which, on average, stayed longer in the state of high depolarization; this provided a greater Ca2+ entry from outside. Hence, the pattern of structural/functional organization of calcium signalization in the dendrites can be complemented in the part of both the direct influences of local microgeometry of the dendrite and the indirect ones related to global macrogeometry of the dendritic arborization.  相似文献   

4.
L-type voltage-sensitive Ca2+ channels (VSCCs) are enriched on the neuronal soma and trigger gene expression during synaptic activity. To understand better how these channels regulate somatic and nuclear Ca2+ dynamics, we have investigated Ca2+ influx through L-type VSCCs following synaptic stimulation, using the long-wavelength Ca2+ indicator fluo-3 combined with laser scanning confocal microscopy. Single synaptic stimuli resulted in rapid Ca2+ transients in somatic cytoplasmic compartments (<5 ms rise time). Nuclear Ca2+ elevations lagged behind cytoplasmic levels by approximately 60 ms, consistent with a dependence on diffusion from a cytoplasmic source. Pharmacological experiments indicated that L-type VSCCs mediated approximately 50% of the nuclear and somatic (cytoplasmic) Ca2+ elevation in response to strong synaptic stimulation. In contrast, relatively weak excitatory postsynaptic potentials (EPSPs; approximately 15 mV) or single action potentials were much less effective at activating L-type VSCCs. Antagonist experiments indicated that activation of the NMDA-type glutamate receptor leads to a long-lasting somatic depolarization necessary to activate L-type VSCCs effectively during synaptic stimuli. Simulation of action potential and somatic EPSP depolarization using voltage-clamp pulses indicated that nuclear Ca2+ transients mediated by L-type VSCCs were produced by sustained depolarization positive to -25 mV. In the absence of synaptic stimulation, action potential stimulation alone led to elevations in nuclear Ca2+ mediated by predominantly non-L-type VSCCs. Our results suggest that action potentials, in combination with long-lived synaptic depolarizations, facilitate the activation of L-type VSCCs. This activity elevates somatic Ca2+ levels that spread to the nucleus.  相似文献   

5.
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.  相似文献   

6.
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.  相似文献   

7.
Abstract: The toxicity of thapsigargin, a selective inhibitor of endoplasmic reticular Ca2+-ATPase, was investigated in GT1-7 cells, a murine hypothalamic cell line. Treatment of these cells with 50 or 100 nM thapsigargin greatly reduced cell viability at 24 and 48 h. These doses of thapsigargin induced a rapid rise in free cytosolic Ca2+ ([Ca2+]i), followed by a sustained increase. Addition of EGTA to chelate extracellular Ca2+ diminished somewhat the size of the initial increase of [Ca2+]i caused by thapsigargin, and abolished the sustained increase. The sustained increase could also be abolished by addition of La3+ and by SKF 96365, a drug selective for receptor-mediated calcium entry, but not by verapamil or flunarizine. Pretreatment with 50 µM BAPTA/AM, a cytosolic Ca2+ chelator, inhibited the peak [Ca2+]i caused by thapsigargin but did not inhibit the sustained elevation of [Ca2+]i. Neither EGTA nor BAPTA/AM inhibited the cell death induced by thapsigargin. The cell death was characterized by DNA fragmentation (“laddering”), nuclear condensation and fragmentation, and was inhibited by protein synthesis inhibitor cycloheximide, all characteristic of apoptotic cell death. Overexpression of the proto-oncogene bcl-2 in GT1-7 cells inhibited significantly DNA fragmentation, nuclear condensation and fragmentation, and cell death induced by thapsigargin. However, Bcl-2 did not alter either basal [Ca2+]i or the elevation of [Ca2+]i induced by thapsigargin. Our results suggest that abnormal Ca2+ release from endoplasmic reticulum caused by thapsigargin induces GT1-7 death by apoptosis and that this effect does not depend on Ca2+ influx from the extracellular space. Bcl-2 inhibited apoptosis induced by thapsigargin, but the mechanism is unlikely to be inhibition of endoplasmic reticular Ca2+ release in GT1-7 neuronal cells.  相似文献   

8.
The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring.  相似文献   

9.
The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring.  相似文献   

10.
In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM) and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively. Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene (100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.  相似文献   

11.
采用系统调查方法研究田间玉米粗缩病(MRDV)的自然发展动态和经济损失规律,其结果表明,MRDV在玉米生长季中的进展曲线遵循对数抛物线函数(y=a·e~bx ex~2)规律,从而建立了中单2#和丹玉13#玉米上MRDV(病指数和发病率)的流行模型(α<0.05,估计病情符合率75—100%),同时认为此函数为生长后期表现“隐症”的一类植物病毒病发展动态的通用拟合模型。MRDV对玉米成穗率、穗粒数、穗粒和干粒重诸产量因子都显著影响,相关分析发现玉米损失率与拔节,抽雄和吐丝期的MRDV严重度密切相关(r≥0.89,α<0.05),因此建立了这些时期病指数和病株率与经济损失率间的线性关系模型,并用相应的模型估计了南充地区1988—1989年MRDV引起的玉米产量和经济损失。  相似文献   

12.
Palmitoylation represents a common motif for anchorage of cytosolic proteins to the plasma membrane. Being reversible, it allows for controlled exchange between cytosolic and plasma membrane-bound subpopulations. In this study, we present a live cell single molecule approach for quantifying the exchange kinetics of plasma membrane and cytosolic populations of fluorescently labeled Lck, the key Src family kinase involved in early T cell signaling. Total internal reflection (TIR) fluorescence microscopy was employed for confining the analysis to membrane-proximal molecules. Upon photobleaching Lck-YFP in TIR configuration, fluorescence recovery proceeds first via the cytosol outside of the evanescent field, so that in the early phase fluorescence signal arises predominantly from membrane-proximal cytosolic Lck. The diffusion constant of each molecule allowed us to distinguish whether the molecule has already associated with the plasma membrane or was still freely diffusing in the cytosol. From the number of molecules that inserted during the recovery time we quantified the insertion kinetics: on average, membrane-proximal molecules within the evanescent field needed ∼400 ms to be inserted. The average lifetime of Lck in the plasma membrane was estimated at 50 s; together with the mobility of 0.26 μm2/s this provides sufficient time to explore the surface of the whole T cell before dissociation into the cytosol. Experiments on palmitoylation-deficient Lck mutants yielded similar on-rates, but substantially increased off-rates. We discuss our findings based on a model for the plasma membrane association and dissociation kinetics of Lck, which accounts for reversible palmitoylation on cysteine 3 and 5.  相似文献   

13.
14.
15.
Abstract

We present a comparative study, using molecular dynamics, of systems of diatomic, hard dumb-bell, molecules in which the interatomic distance is either constrained to a fixed value or is allowed to vary freely between preset limits. A significant improvement in simulation effciency can be attained by allowing the bond length to vary. We find that thermodynamic properties, and some time correlation functions, are only slightly affected by the removal of the rigid bond-length constraint. The atomic velocity correlation function responds dramatically at short times to changes in the degree of non-rigidity, but at long times these differences are much less important.  相似文献   

16.
In the model of a cerebellar Purkinje neuron with reconstructed active dendrites, we investigated the impact of the ratio between volumes of the endoplasmic reticulum (organellar calcium store) and cytosol on the Ca2+ dynamics in asymmetrical parts of the dendritic arborization during generation of different structure-dependent patterns of bursting activity. Tonic synaptic excitation homogeneously distributed over the dendrites (a spatially homogeneous stationary input signal) caused spatially heterogeneous variations of the dendritic membrane potential (MP) accompanied by periodical or nonperiodical bursts of action potentials at the cell output. The MP waveforms recorded from the segments of asymmetrical dendrites were then applied to the membrane of selected dendrite segments as command voltages in a dynamic clamp mode. In these segments, the relative size of the stores was varied. This provided equal to each other local calcium currents and influxes into the cytosol of the segment differently filled with the organellar store. Regardless of the impulse pattern, microgeometry of the segment and the store modulated calcium transients exactly in the same way as in previous studies of electrical and concentration responses to local phasic synaptic excitation of the modeled neuron. Peak values of depolarization-induced elevations of the cytosolic Ca2+ concentration increased with the portion of the intracellular volume occupied by the store. The most important factor defining this dependence was the ratio of the membrane area vs the organelle-free cytosol volume of the dendritic segment. Concentrations of Са2+ deposited in equal-sized segments of asymmetrical parts of the dendritic arborization where asynchronous unequal variations of the MP were observed during generation of nonperiodical bursting at the output demonstrated considerable specificity. A greater amount of calcium was deposited in the segments staying, on average, in a high-depolarization state for a longer time (this intensified activation of calcium channels and amplified the corresponding Ca2+ influx into the cytosol). Hence, local dynamics of the Ca2+ concentration depend directly on local microgeometry and indirectly on global macrogeometry of the dendrite arborization, as the latter determines spatial asymmetry-related unequal transients in different parts of the dendritic arborization having active membrane properties.  相似文献   

17.
Abstract

A quantum dynamics simulation of vibrations of molecules including transition from state to state is demonstrated based upon the Pechukas method. The method has been examined to clarify characteristics in relation to the simulation. It may present a lot of useful information of the vibrational relaxation and thermal excitation of the molecule.  相似文献   

18.
19.
Abstract

We report on unrestrained molecular dynamics simulations of an RNA tetramer binding to a tetra-nucleotide overhang at the 5′-end of an RNA hairpin (nicked structure) and of the corresponding continuous hairpin with Na+ as counterions. The simulations lead to stable structures and in this way a structural model for the coaxially stacked RNA hairpin is generated. The stacking interface in the coaxially stacked nicked hairpin structure is characterized by a reduced twist and shift and a slightly increased propeller twist as compared to the continuous system. This leads to an increased overlap between C22 and G23 in the stacking interface of the nicked structure. In the simulations the continuous RNA hairpin has an almost straight helical axis. On the other hand, the corresponding axis for the nicked structure exhibits a marked kink of 39°. The stacking interface exhibits no increased flexibility as compared to the corresponding base pair step in the continuous structure.  相似文献   

20.
DYT1 dystonia is the most common hereditary form of primary torsion dystonia. This autosomal-dominant disorder is characterized by involuntary muscle contractions that cause sustained twisting and repetitive movements. It is caused by an in-frame deletion in the TOR1A gene, leading to the deletion of a glutamic acid residue in the torsinA protein. Heterozygous knock-in mice, which reproduce the genetic mutation in human patients, have abnormalities in synaptic transmission at the principal GABAergic neurons in the striatum, a brain structure that is involved in the execution and modulation of motor activity. However, whether this mutation affects the excitability of striatal GABAergic neurons has not been investigated in this animal model. Here, we examined the excitability of cultured striatal neurons obtained from heterozygous knock-in mice, using calcium imaging as indirect readout. Immunofluorescence revealed that more than 97% of these neurons are positive for a marker of GABAergic neurons, and that more than 92% are also positive for a marker of medium spiny neurons, indicating that these are mixed cultures of mostly medium spiny neurons and a few (~5%) GABAergic interneurons. When these neurons were depolarized by field stimulation, the calcium concentration in the dendrites increased rapidly and then decayed slowly. The amplitudes of calcium transients were larger in heterozygous neurons than in wild-type neurons, resulting in ~15% increase in cumulative calcium transients during a train of stimuli. However, there was no change in other parameters of calcium dynamics. Given that calcium dynamics reflect neuronal excitability, these results suggest that the mutation only slightly increases the excitability of striatal GABAergic neurons in DYT1 dystonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号