首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V79-R Cells grown in lipid-free medium contained octadecenoic acids as the major fatty acids esterified to lipids. Octadecenoic acids were composed of two positional isomers, oleic and cis-vaccenic acids. The distribution of oleic and cis-vaccenic acids was altered by the addition of various fatty acids to the medium. There was no difference in the distribution of oleic and cis-vaccenic acids in phospholipids between mitochondria and microsomes. Cardiolipin contained higher amounts of palmitoleic and cis-vaccenic acids than did other lipids.  相似文献   

2.
In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes.  相似文献   

3.
Abstract— —Selectivity in the esterification of fatty acids to lysolecithin by rat-brain enzymes in vitro was investigated using free fatty acids (activation plus esterification) and CoA esters (esterification) of two naturally-occurring monoenoic fatty-acid isomers, oleic acid [18:1 (n - 9)] and cis-vaccenic acid [18:1 (n - 7)]. Esterification of free acids to l-acyl-sn-glycero-3-phosphorylcholine (1-acyl GPC) was dependent on CoA and ATP, and was stimulated by MgCl2 and NaF. Under comparable conditions, fatty-acid activation (acyl-CoA synthetase [acid: CoA ligase (AMP)] EC 6.2.1.3.) appeared to be rate-limiting to 1-acyl GPC acyltransferase (acyl-CoA:l-acylglycero-3-phosphocholine O-acyltrans-ferase, EC 2.3.1.23.), since rates were always less with free fatty acids than with the CoA esters. A comparison of substrate curves obtained with free fatty acids and CoA esters suggests a preference for oleic acid during activation. Acyltransferase activity with 2-acyl GPC was similar with both acyl-CoA isomers, whereas with 1-acyl GPC, activity with oleoyl-CoA consistently exceeded that with cis-vaccenoyl-CoA. This difference between patterns of selectivity in esterification of positions 1 and 2 of lecithin suggests that separate enzymes catalyze the two reactions. The transfer of the isomers to the 2 position was affected in a similar manner by changes in pH and temperature, as well as in protein, fatty acid (or acyl-CoA), and 1-acyl GPC concentrations. Patterns of incorporation with simultaneous incubation of both isomers suggests one enzyme. Differences in acyltransferase activity with the two isomerie acyl-CoA's were observed in subcellular distribution, activity changes with brain maturation, and loss of activity on preincubation of microsomes at 45C. From these results it is not certain whether oleic and cis-vaccenic acids are esterified to the 2 position by separate enzymes, or by one enzyme with different affinities for the isomers. However, the investigation clearly indicates that acyltransferases, and possibly acyl-CoA synthetases in brain possess selectivity related to subtle differences in double-bond position. These selectivities probably are important in determining the specific fatty-acid composition of the complex lipids of brain.  相似文献   

4.
Effect of chlorophenols on the membrane lipids of bacterial cells   总被引:1,自引:0,他引:1  
Chlorophenols, widespread soil and water contaminants and often degradation products of some pesticides, are a potential stress factor for survival of environmental bacteria. The effect of pentachlorophenol (PCP) and 2,4-chlorophenol (2,4-CP) on the growth, amount of lipid, and fatty acid composition in the membrane lipids was examined in a strain of the bacterium Kocuria varians, able to degrade chlorophenols. The index of fatty acid unsaturation in two main membrane lipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) decreased in the presence of chlorophenols. Transformation of stearic acid into oleic acid was significantly increased by PCP addition only in PE, but conversion of oleic acid into linoleic acid was blocked by PCP and 2,4-CP in both PC and PE. This observation may indicate that while Δ9 desaturase was sensitive mainly to 2,4-CP, activity of Δ12 desaturase was inhibited by both PCP and 2,4-CP.  相似文献   

5.
Effects of perfluorocarboxylic acids (PFCAs) on proportions of oleic acid and cis-vaccenic acid through acyl-CoA chain elongation systems have been studied in the liver of rats. Administration of PFCAs caused a significant increase in palmitoyl-CoA chain elongation activity while these chemicals did not affect palmitoleoyl-CoA chain elongation activity in vivo.Condensation for both palmitoyl-CoA and palmitoleoyl-CoA were inhibited by PFCAs in vitro at the concentrations, which were physiologically found in the liver of rats treated with the PFCAs. Δ9 Desaturase, which catalyzes both stearoyl-CoA desaturation and palmitoyl-CoA desaturation, was induced by the treatments of rats with the PFCAs. The administration of the PFCAs to rats caused a marked increase in proportion of oleic acid, while that of cis-vaccenic acid was not affected at all. These results strongly suggest that the induced palmitoyl-CoA chain elongation by PFCAs, which exist in the liver, effectively produces oleic acid in concert with the induced stearoyl-CoA desaturase, but the inhibitory effects of PFCAs on either palmitoyl-CoA chain elongation or palmitoleoyl-CoA chain elongation are not crucial for the formation of the elongated fatty acids in vivo.  相似文献   

6.
The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.Abbreviation 4-CP 4-chlorophenol  相似文献   

7.
Phase transitions of liposomes composed of synthetic phosphatidylcholines acylated with the cyclopropane fatty acids, lactobacillic and dihydrosterculic acid, were studied by differential scanning calorimetry. Transition temperatures were approx. 16°C higher than for phosphatidylcholines acylated with the corresponding unsaturated fatty acids, cis-vaccenic and oleic acid. Though our transition temperatures were all several degrees lower than those determined by Silvius and McElhaney ((1979) Chem. Phys. Lipids 25, 125–134), the increase produced by replacement of the double bond with a cyclopropane ring was the same. We propose that this replacement, through its effect on membrane fluidity, may serve to regulate the activity of membrane-associated processes such as transport.  相似文献   

8.
The fatty acid composition of the lipids of a Wautersia eutropha polyhydroxyalkanoate-producing strain was studied by chromato-mass spectrometry. A total of 27 fatty acids were identified; their distribution in the cell fractions was determined. In the cytoplasmic membrane, palmitic, palmitoleic, and cis-vaccenic acids were the major components. Long-chain β-hydroxy acids and myristic acids (components of the lipopolysaccharides of the cell envelope) predominated in the fraction of strongly bound lipids. When the polymer was actively synthesized, the content of cyclopropane acids in the easily extracted lipids increased and the content of the corresponding monoenoic acids decreased. The strongly bound lipids had a high content of long-chain β-hydroxy acids (more than 50% of the total fatty acids). These results made it possible to determine the source of polyhydroxyalkanoate (PHA) contamination and to choose the strategy for their purification.  相似文献   

9.
Only bacteria sufficiently resistant to the toxic compounds in their environment can be used for the efficient biodegradation process in order to eliminate a widespread contamination by polychlorinated biphenyls (PCBs). The presence of PCBs results in bacterial controlled rigidification of cytoplasmic membrane. The four bacterial isolates from long-term PCB-contaminated soil (Alcaligenes xylosoxidans, Pseudomonas stutzeri) and sediment (Ochrobactrum anthropi, Pseudomonas veronii) have been used to select the strain most adapted to the PCBs, i.e. with efficient changes in the membrane phospholipid fatty acids. PCBs and their toxic degradation products — the 3-chlorobenzoic acids (3-CBA as the most toxic one) — were added separately to the liquid medium with glucose in two experimental sets: at lag phase and in stationary phase of bacterial growth in order to evaluate the effects of chemicals to cytoplasmic membrane. The main parameter — the changes in fatty acids composition (in the total lipids and the main membrane phospholipid phosphatidyletanolamine) were studied. 3-CBA caused growth inhibition when added at lag phase. However, when added during the stationary growth, inhibition was not observed. Similarly, after addition of PCBs to the stationary growth culture, inhibition of growth was not observed with all tested strains (except for P. stutzeri). This fact indicates the importance of time contact of bacteria during growth phase with xenobiotics. O. anthropi and A. xylosoxidans appeared to be the most adapted to the presence of PCBs (with sufficient membrane adaptation), active under the adverse conditions, and able to survive in the contaminated environment.  相似文献   

10.
11.
When the cells of Saccharomyces cerevisiae are exposed to high concentration of ethanol, the content of oleic acid (C18:1n-9) increased as the initial concentration of ethanol increased. Based on this observation, we attempted to confer ethanol tolerance to S. cerevisiae by manipulating fatty acid composition of the cells. Rather than altering OLE1 expression [the desaturase making both C16:1n-7 (palmitoleic acid) and C18:1n-9], we introduced elongase genes. Introduction of rat elongase 1 gene (rELO1) into S. cerevisiae gave cis-vaccenic acid (cis-C18:1n-7) by conversion from C16:1n-7, and the increase in this C18:1 fatty acid did not confer ethanol tolerance to the cells. On the other hand, the introduction of rat elongase 2 gene (rELO2), which elongates C16:0 to C18:0, drastically increased C18:1n-9 content, and the cells acquired ethanol tolerance, emphasizing the specific role of C18:1n-9. Furthermore, the transformant of rELO2 also conferred tolerance to n-butanol, n-propanol, and 2-propanol.  相似文献   

12.
Summary Ligninase production by Phanerochaete chrysosporium MZKIBK-B 186 was increased when the culture medium was supplemented with an emulsion of oleic acid. Addition of linseed oil enhanced fungal biomass synthesis. Under the growth conditions used in our tests, the fungus was capable of accumulating fatty acids from the culture medium into cell lipids. Addition of oleic acid, Tween 80, or 3-[(cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS), which are known to increase ligninase production by fungi, resulted in oleic acid enrichment of whole cell and polar lipids. Offprint requests to: D. Le相似文献   

13.
Alterations in the degrees of saturation of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin of Escherichia coli K–12 were determined after raising or lowering the growth temperature during the exponential growth phase. After raising the growth temperature from 17 to 42°C, the cells continued to grow with increasing degrees of saturation of the three phospholipids. cis-9,10-Methylenehexadecanoic acid increased only in phosphatidylethanolamine. During growth after lowering the growth temperature from 42 to 17°C, no increase was found in cyclopropane fatty acid content of phosphatidylethanolamine, in which cis-vaccenic acid increased. Significance of cyclopropane fatty acid formation in phospholipids was discussed.  相似文献   

14.
15.
Frankia isolates from nodules of the genera Casuarina (BR, S21, Thr), Allocasuarina (Allo2), and Gymnostoma (G80) were found to grow exponentially with high biomass yield and minimal sporangia formation in stirred propionate mineral medium when supplemented either with 2.4 μM palmitic acid (C16:0), pentadecanoic (C15:0), heptadecanoic (C17:0), or linoleic (C18:2, cis 9, 12) fatty acids. Strains also grew with lauric (C12:0) or myristic (C14:0) acids, but gave lower biomass yield. Stearic acid (C18:0) produced a good biomass yield, but cultures slowly accumulated sporangia; oleic acid (C18:1, cis-9) was detrimental to growth. Caprylic (C8:0) or capric (C10:0) acids proved to be prejudicial for long-term storage of Frankia strains. In experiments using labeled 1,2-dipalmitoyl phosphatidylcholine and palmitic acid, radioactivity bound rapidly to the insoluble, but solvent-extractable fraction of Frankia cells. In contrast, label from propionic acid accumulated in the cytosolic fraction. Therefore, the beneficial effect of some specific phospatidylcholines or free fatty acids on Frankia growth appears to result from their utilization as building blocks for the membrane, suggesting that membrane biosynthesis may be the limiting step for Frankia growth in unamended propionate mineral medium. Received: 9 October 1995 / Accepted: 24 February 1996  相似文献   

16.
The impact of cis, trans and cyclopropane fatty acids on membrane fluidity was investigated using batch‐grown Pseudomonas putida P8 and Comamonas testosteroni ATCC 17454. A major difference observed between the two investigated strains is the absence of the ability to synthesize trans‐unsaturated fatty acids in Comamonas. When grown exponentially at 30 °C, a shift to 35 °C increased the trans/cis ratios of the fatty acids of P. putida P8 from 0 to 0.81 and 0 to 1.07, in lipid extracts and cell hydrolyzates, respectively. After prolonged growth followed by nutrient deprivation for 48 h, both at 30 °C, trans fatty acids were absent, but the cyclo/cis ratios rose from 0.1 to 1.55 in lipid extracts, and from 0.1 to 1.54 in cell hydrolyzates. C. testosteroni ATCC 17454 contained no cyclo fatty acids when harvested in the exponential phase after 6 h, whereas after 72 h cultivation, the cyclo/cis ratios rose to 0.49 and 0.47, in lipid extracts and cell hydrolyzates, respectively. Trans fatty acids were never observed in this strain. Increased cyclo/cis and trans/cis ratios correlated with decreased fluidity measured by the fluorescence anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH) intercalated in the bilayers of liposomes and by Fourier Transform Infrared (FTIR) spectroscopy of lipids prepared from the cells. The specific effect of cyclopropane fatty acids on membrane fluidity was much smaller than that of trans fatty acids. FTIR‐measurements of intact cells of P. putida P8 confirmed the high potency of trans fatty acids to decrease the fluidity. In cells with induced cyclopropane fatty acid synthesis, the membranes remained more fluidized, indicating the lower importance of these fatty acids for homeoviscosis.  相似文献   

17.
The physiological significance of trans unsaturated fatty acids, which are constituents of membrane lipids of the phenol-degrading bacterium Pseudomonas putita P8, was studied. The addition of phenol or phenol derivatives to the cells induced the formation of trans unsaturated fatty acids, yielding an overall maximal amount of 41.3% of total fatty acids. The inhibition of de-novo lipid synthesis by cerulenin prevented the change in the degree of saturation in the lipids. However, the cells could still respond to phenols with an amplified conversion of cis into trans unsaturated fatty acids, which is apparently a post-synthesis mechanism of isomerization of the double bond. The cis/trans conversion correlated with growth inhibition induced by toxic concentrations of 4-chlorophenol, whereas only growing cells were able to change the degree of saturation. In cells that were protected against phenol by immobilization in calcium alginate, the conversion of cis into trans fatty acids occurred at higher toxin concentrations compared with free cells. Cells entering the stationary growth phase increased the prodortion of saturated to unsaturated fatty acids but maintained a constant trans/cis ratio.P. putida P8 reacted to an increase or decrease in the growth temperature with an appropriate change in the ratio of saturated to unsaturated fatty acids and in cells inhibited by cerulenin with a change in the trans/cis ratio. This study shows that the physiological role of the cis/trans conversion is probably the regulation of membrane fluidity when the most important mechanism for this, the modification of the degree of saturation, cannot by used by the cells due to inhibition of growth and lipid biosynthesis. Correspondence to: H. Keweloh  相似文献   

18.
In order to investigate nutritional interactions in the symbiotic scleractinian coral-zooxanthella association, fatty acids of the coral Galaxea fascicularis were analysed in two groups of cultured microcolonies. The first group was fed with Artemia sp., while the second group was starved. After an initial 1-month period during which both groups were subjected to the same normal light conditions (constant irradiance of 125 E·cm-2·s-1 and 14:10 h light:dark), a light cap was used to cover the aquarium and keep all the microcolonies in permanent darkness for 20 days. During the light phase of the experiment it was shown that the nutritional status lead to large variations in the percentage of saturated, mono-unsaturated and polyunsaturated fatty acids. Palmitic acid (C16:0) was the most abundant fatty acid in both groups. Important differences between fed and starved microcolonies occurred during the dark phase of the experiment. In the fed group the dark phase was characterized by a significant increase in polyunsaturated fatty acids. Particularly arachidonic acid (C20:4 n-6) became the most important fatty acid followed by docosatrienoic acid (C22:3 n-3). A slight increase in these two fatty acids was also found in the starved group but the bulk of polyunsaturated fatty acids was significantly decreased. In this group, palmitic acid remained the most important fatty acid while an increased concentration of cis-vaccenic acid (C18:1 n-7) was found at the end of the experiment. The increased concentration of cis-vaccenic acid might indicate that bacteria serve as a source of energy. While the number of zooxanthellae per milligram of protein and the chlorophyll a to protein ratio strongly decreased in the starved microcolonies immediately after the beginning of the dark period, the decrease in fed microcolonies was delayed for about 10 days. Furthermore, after 20 days of dark incubation the chlorophyll a to protein ratio was the same as measured at the beginning of the dark period. This suggests that in the dark the metabolic requirements of the zooxanthellae are in part met from the animal host through a heterotrophic mode of nutrition.Abbreviations CZ cultured zooxanthellae - FAME fatty acid methylester(s) - FDM fed dark microcolonies - FLM fed light microcolonies - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SDM starved dark microcolonies - SFA saturated fatty acids - SLM starved-light microcolonies - SW sea water - TFA total fatty acids  相似文献   

19.
Reversed phase liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (RP-HPLC/APCI-MS) was used for direct analysis of triacylglycerols (TAGs) from different strains of the cyanobacteria Mastigocladus laminosus, Tolypothrix cf. tenuis and Tolypothrix distorta. This technique enabled us to identify and quantify the specific molecular species of TAGs directly from lipid extracts of the cyanobacteria. The regioisomeric series of TAGs having α-linolenic and γ-linolenic and also oleic and cis-vaccenic acids were separated by RP-HPLC and identified by APCI-MS. M. laminosus produced only a few molecular species of TAGs, including both isomers of octadecenoic (oleic and vaccenic) acid, while T. distorta contained tens of molecular species of TAGs having FAs with up to four double bonds (stearidonic acid and including also its positional isomer, i.e. 3,6,9,12-octadecatetraenoic acid) and both positional isomers (α and γ) of linolenic acids. Individual strains of both cyanobacteria exhibited different contents of polyunsaturated fatty acids (Tolypothrix sp.) and different distribution of positional isomers of monoenoic fatty acids in TAGs (M. laminosus).  相似文献   

20.
The adaptation of fatty acid composition of Chromohalobacter israelensis, a euryhalophilic bacterium, grown at different salt concentrations was studied. C. israelensis tolerated NaCl up to concentrations of 20% (w/v) and showed optimal growth at 7% (w/v). Major fatty acids of this bacterium were palmitic acid (16:0), stearic acid (18:0), palmetoleic acid (16:1cis9), and cis-vaccenic acid (18:111). The salt concentration strongly influenced the fatty acid composition. In the presence of sub-optimal salt concentrations, the degree of saturation decreased, suggesting the importance of salt in maintaining the osmotic balance of the cell with its environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号